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Abstract. A text steganography method based on Markov chains is in-
troduced, together with a reference implementation. This method allows
for information hiding in texts that are automatically generated following
a given Markov model. Other Markov - based systems of this kind rely
on big simplifications of the language model to work, which produces less
natural looking and more easily detectable texts. The method described
here is designed to generate texts within a good approximation of the
original language model provided.
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1 Introduction

Steganography is the field that deals with the problem of sending a message from
a sender A to a recipient B through a channel that can be read by a so-called
Warden, in a way that the Warden doesn’t suspect that the message is there.

Steganographic techniques exist for hiding messages in images, audio, videos,
and other media. In particular, text steganography studies information hiding on
texts. There are many techniques for this, as summarized on [1] [2]. One of the
simplest steganographic methods for texts works by encoding a fixed amount
of bits per word, using a table that maps words to codes, and vice versa. A
disadvantage of this trivial technique is that the text will be obviously random
at a syntactic level, as words are generated in a way that is independent of
context.

There are other simple methods that store data in the text format, using
spacing, capitalization, font or HTML tags. For example SNOW [3] hides infor-
mation in tabs and spaces at the end of each line, that are usually not visible on
text viewers. Also, some techniques start from a base text (the covertext), and
modify it in some way: for example by switching words to near synonymous, or
by changing sentences from their original grammatical structure to another one
that preserves the meaning. The technique shown in [4] hides information by
modifying words in a way that resembles ortographical or typographical errors.
There are other techniques that rely on translation [5].

In other cases, texts are generated using a grammar model; this kind of
system has the advantage of producing texts that make sense at a grammatical
level, although not at a semantical level.

And there are techniques, like the one described on this paper, that are based
on using Markov models to generate texts that encode some hidden message on
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them. Weihui Dai et al. [6] [7] explore a method for encoding data on this way;
[8] shows a simple implementation of a similar concept.

This article explores a specific method for using Markov chains for text
steganography. How this method compares to other similar methods and how
it works is explored further in the next sections. A reference implementation of
the method described here is also included in the open source program Markov-
TextStego [9].

2 Related Work

Many methods for text steganography that are not based on Markov chains are
known. An example is NiceText [10], which shows a way to encode ciphertext to
text, that uses custom styles, Context Free Grammars and dictionaries.

The approach used in [6] [7] is based on Markov chains. When encoding,
some data is provided as input, and the system generates a text as output using
a given Markov chain. The stegotexts are generated in a way that simulates that
they were generated by the Markov chain.

However, to avoid complex calculations, the Markov model is simplified by
assuming that all probabilities from a given state to any other state are equal.
This can change the quality of the texts generated by the Markov chain signif-
icantly. For example words like ”the” and ”naturally” are both potential starts
of a phrase, but the former should be much more frequent than the latter; and
this difference is not preserved by the simplification.

Other Markov - based models or similar models require of similar simplifica-
tions of the Markov chain, typically by making all outbound probabilities of each
state equal (as in the previous example), or by replacing them by other ones,
either explicitly or implicitly through the operation of the encoding algorithm
[8] [11] [12].

The method described here aims to be an answer to the question of whether
it is possible to preserve the probabilities in the Markov models to higher levels
of accuracy. The method is not optimally precise, but it generates texts that use
a language model that is a good approximation of the provided Markov model.

3 Markov Chain Models

A Markov chain is a model for a stochastic process. A sequence of random
variables X = (X1, ..., XT ) with values from a finite set S is a Markov chain, if
it has the Markov properties [13] [14]:

Limited Horizon property:

P (Xt+1 = sk|X1, ..., Xt) = P (Xt+1 = sk|Xt) (1)

Time Invariant property:

P (Xt+1 = sk|Xt) = P (X2 = sk|X1) (2)
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The first property means that the Markov chain doesn’t have memory of any
states, beyond the last one. The second property means that the conditional
probabilities for all states do not depend on the position (time) on the sequence.

Diagrams like the one shown in Fig. 1 are frequently used to represent the
transitions in Markov chains. All nodes in the graph represent states (elements
of S), and any arrow from sj to sk with a value of p means that P (sk|sj) = p.
We call any state sk an outbound state of sj , if there is an arrow from sj to sk.
For every sj that doesn’t have an arrow to another sk state, P (sk|sj) = 0.

Fig. 1. Example Markov chain. In the context of text steganography, each state is a
word. The special state ”start” marks both the start and end of a sentence.

Markov chains and models are frequently used to model language [13]; when
that’s the case, states in the chain are used, for example, to represent words,
characters, or n-grams. Also, Markov models are used in steganography (as de-
scribed above), and in steganalysis [15] [16].

A Markov language model may be useful to compute probabilities for phrases,
from the n-gram probabilities. For example given the Markov chain shown in
Fig. 1, if the process were to start from ”start” (symbol that we use both for
start and end of a sentence), the probability of generating the text composed by
the sequence of words or states [s1, s4, s7] would be 0.28.

These models can also be used to generate random texts. For this, a random
source is used that can pick a next state sk with probability P (sk|sj), given the
current state sj . The algorithm for generating the random text starts by setting
”start” to be the current state; then, in every iteration it uses the random
source to pick the next word, which also becomes the new current state in the
next iteration. To generate a single sentence, the process can be made to stop
when the state ”start” is reached.

Although Markov chains only have memory of a single previous state, every
state can be a bigram, or an n-gram. This way, a Markov language model can
have memory for more than a single word. Although this article only describes
the steganographic method based on states that are single words, the reference
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implementation of the system [9] allows using both unigrams and bigrams as
states, and it is possible to extend it to support n-grams with n > 2. Table 3
compares the results of the encoding procedure when using unigrams and bi-
grams.

A Markov language model with states as single words can be computed from
the frequencies of all bigrams, and all unigrams in a text:

P (wn|wn−1) =
count(wn−1, wn)

count(wn−1)
(3)

where count(a, b) is the number of occurrences of word a followed immedi-
ately by word b in the text, and count(a) is the number of occurrences of word
a.

As discussed above, some steganographic methods are based on these Markov
language models. The language model is usually simplified in some way; for
example [6] sets all P (x|w) with w fixed, to a fixed k.

In these models, once the simplification is done, the Markov chain is used
to encode data into text; every word stores some fixed or variable amount of
bytes, and every bigram in the generated text is required to have conditional
probability P (wn|wn−1) > 0 in the Markov chain. A decoding algorithm that
reverses the process, transforming the text into data, is also defined.

The approach shown in this article avoids much of the simplification in the
probabilities of the Markov chain. Although there is still some precision loss in
the model, for the most part, the proportions between the frequencies of different
n-grams are preserved, specially for long texts.

4 Fixed-size Steganography

A main objective in this article is to describe two functions, encode, and decode,
that are used to create a text out of a data input, and to get the original data
out of an encoded text. In steganography literature, it would be said that encode
generates a stegotext out of the input plaintext, while decode does the reverse
process. The encode function is not cryptographically secure; it assumes that
its input is a plaintext, or some data that has already been encrypted using an
independent system. In the latter case, encode’s input can be called ciphertext.

We require the encoding function to be invertible; that is, for every input
data d1 and d2, encode(d1) = encode(d2) only if d1 = d2. Also decode is the
inverse of encode, so for every input d, decode(encode(d)) = d. The encoding
function encode is required to work on all the domain of data d; the required
domain of decode however needs only be the image of encode.

The encode and decode functions will be built out of simpler functions, for
fixed-size encoding and decoding. These functions are encodefixed(data, datasize),
and decodefixed(text, datasize). Both the Markov chain and the starting symbol
are actually required for these functions too, but they are left out for simplicity.
Only when it is required for the purposes of the explanation, a third argument
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is added to both functions, for the start symbol: encodefixed(data, datasize,
startsymbol), and decodefixed(text, datasize, startsymbol).

In this system, the size of d in bits is known beforehand both for encodefixed
and for decodefixed. The requirements for both functions are weaken compared
to those for their non-fixed counterparts; it is required that for every input data
d1 and d2 such that length(d1) = length(d2), encodefixed(d1, length(d1)) =
encodefixed(d2, length(d2)) only if d1 = d2 (where length(d) is the size of d in
bits). This weaker restriction means that the encoder may produce the same
text for two different data inputs, only if they have different lengths, as can be
seen in the examples in Table 1.

Also, decodefixed(z, length(z)) = d with z = encodefixed(d, length(d)).

4.1 Mapping of Probabilities to Ranges

A basic component for encoding and decoding is the function named subranges,
that maps all outbound states from a given state, to subranges of a given range.
These subranges are a partition of the original range.

subranges(mc, s, r) = [(s1, r1), ..., (sn, rn)] (4)

where mc is a Markov chain, s is a state in S, and r is a range of natural
numbers [a, b]. The result is a list that must have some properties that are
described below.

The behavior of this function is that it maps outbound states of a Markov
chain to subranges of a given range, in a way that approximately matches the pro-
portion between the sizes of the different subranges, to the proportion between
the probabilities of the respective states. For example, if mc is the chain in Fig. 1,
s = start, and r = [0, 3], the expected result would be [(s1, [0, 1]), (s2, [2, 3])].
That is, because each outbound state has a 0.5 probability, it has to get half
of the full range. If s = s2, the expected result would be [(s4, [0, 0]), (s5, [1, 3])],
where again the length of the subranges matches the proportion of their respec-
tive probabilities.

This partitioning method will be used in an iterative way, both for encoding
and for decoding. Fig. 2 (in Section 4.2) shows how this is done, although the
details of the operation are described in the next sections.

The returned value for subranges in Equation 4 is a list of pairs (sk, rk),
where sk is a state such that P (sk|s) > 0, and rk is a subrange of r. The
subranges of r returned by subranges are a partition of r.

A good implementation of the function generates a mapping between sub-
ranges rk and states sk, such that the fraction of the total range length for each
rk is approximately equal to the probability of the respective state sk. That is:

length(rk)

length(r)
≈ P (sk|s) (5)

Where the length of a range is defined to be length([a, b]) = b− a+ 1.
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The property in Equation 5 is not a strict requirement, as even without
this condition the encoding function will still generate texts that are decoded
correctly. However, only when this condition is held the texts that are generated
will be approximately described by the original Markov language model.

[Condition of Minimal Length] The following condition is actually re-
quired for the steganographic system to work, however. Any time that there are
at least two different states s1 and s2 such that P (s1|s) > 0 and P (s2|s) > 0
(that is, every time s has at least two outbound states), it is required that
subranges returns a list with at least two elements.

This restriction is necessary for ensuring that both the encoder and decoder
methods halt for all inputs. It might produce precision loss in many cases how-
ever, as in the following example: an s state has two outbound states s1 and s2,
with conditional probabilities P (s1|s) = 0.99 and P (s2|s) = 0.01, and the input
range to process is r = [0, 1].

In this case, it would seem that the best output would map s1 to the full
range: the returned value for this would be [(s1, [0, 1])]. However this value
doesn’t hold the Condition of Minimal Length, as the list has a single element,
despite s having more than one outbound state.

Because of this, the only valid results for this example would be [(s1, [0, 0]),
(s2, [1, 1])] and a symmetrical one (same ranges but switching states). As can be
seen, these valid options are worse approximations to the input conditional prob-
abilities, than just mapping s1 to the full state; however the condition described
disallows this better approximation.

The following three functions are used by the encoding and decoding meth-
ods.

As described, subranges returns a list that maps ranges to states. The func-
tion subrangeForState uses the list to return the subrange that is assigned to
a given state:

subrangeForState(mc, sk, r, sl) = rk

from [..., (sk, rk), ...] = subranges(mc, sk, r) such that sk = sl (6)

The function subrangeForNumber returns the subrange in the list that con-
tains a given number:

subrangeForNumber(mc, sk, r, number) = subrange rk

from [..., (sk, rk), ...] = subranges(mc, sk, r) such that number ∈ rk (7)

The function stateForNumber returns the state that is assigned to the sub-
range returned by subrangeForNumber:

stateForNumber(mc, sk, r, number) = state sk

from [..., (sk, rk), ...] = subranges(mc, sk, r) such that number ∈ rk (8)

These functions will be used in the next sections.
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4.2 Encoding Fixed-size Data Using Markov Chains

The function stateForNumber, can also be seen as a function that encodes
data to a single word. Given a Markov chain, a state, a range and a number
(the input data), it finds the corresponding state or word in the chain for that
number. Related to that, subrangeForNumber also defined above, returns the
subrange that corresponds to the word returned by stateForNumber.

Based on these two functions, a sequence of states st and a sequence of ranges
rt can be generated as described in the following two equations. These sequences
are computed given a Markov chain mc, an initial state s0 (typically ”start”),
an input data (number), and an initial range r0 (typically [0, 2n− 1], where n is
the length of the data to store):

st = stateForNumber(mc, st−1, rt−1, number) (9)

rt = subrangeForNumber(mc, st−1, rt−1, number) (10)

Both sequences are defined to be finite (as we want to encode data to a finite
sequence of words); the final element for both is T such that length(rT ) = 1.
This means that we stop encoding when the sequence of words describes a single
number.

Finally, encodefixed(data, length(data)) = [s1, ..., sT ].
This encoding process works by partitioning an input range in a way that

matches the outbound states of a given state, and then selecting the outbound
state whose subrange contains the number to encode. After this is done, the
selected subrange and state are used as the input for the next iteration of the
algorithm. When the process finishes, the encoded text is the sequence of states
that the algorithm went through.

The subranges function is restricted by the Condition of Minimal Length in
Section 4.1 to always split a range in more than one subrange, whenever possible;
therefore the iteration of this process will produce ranges that are smaller and
smaller. (Even though it is possible that a Markov chain that is computed from
a text contains states with only one outbound state, those will eventually lead to
start, which will have more than one outbound state.) Also all subranges must
contain at least one element, so the iterative generation of subranges converges
to a subrange of length 1.

Because the selected subrange length converges to 1, the process has to finish,
and when it finishes there is a subrange around a single number (the original
input) and a list of states (words). For every input data, there is a final result.

For every number d of size n, this final result can be seen as a path that
points to d, as every state in the word sequence tells which subrange to choose
from the partitions generated by subranges. Using this path intuition, it can
be seen that if d1 and d2 are two different numbers of the same size n, their
encoded texts are necessarily different, as they lead to different numbers. In the
same way, the decoding system can find d using the text as a path to the length
1 subrange.
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Fig. 2. Example encoding of 100 into [s2, s4]. This and more examples can be seen in
Table 1.

Fig. 2 shows this partitioning process. The example in the figure uses the
range [0, 8], with the numbers encoded in binary. If we use the Markov chain
shown in Fig. 1 and we start from start, in a first step the range has to be split
in half, because the probabilities for the two states s1 and s2 are both 0.5. The
subrange assigned to s2 can then be split in two other parts, now for the states
s4 and s5, but the proportions are 0.25 and 0.75 in this case. This shows that
if we were to encode the binary number 100, with a fixed size n = 3 bits, we
would get the text [s2, s4]. If we were trying to encode the binary number 111,
we would need to continue partitioning the range for s5, until there is only a
single number in the last subrange.

Table 1 shows the output of encodefixed for a number of inputs. The reference
implementation [9] was used, and the results may vary in other implementations,
depending on specific details of the range partitioning algorithm. All examples
use the Markov chain shown in Fig. 1, with ”start” as the starting state. In
particular, it is possible to see that 100 indeed encodes to [s2, s4], as described
above.

4.3 Decoding of Fixed-size Data Using Markov Chains

Decoding of fixed-size data is based on subrangeForState, which was described
on Section 4.1. It was previously described as a function that returns the sub-
range that is assigned to a given state; but it can also be seen as a decoder from
states to numbers. In this way, the function subrangeForState(mc,wk, r, wl) de-
codes a single word state wl, given that the previous state was wk. The decoded
value is not a number, but a range of numbers: [a, b] where both a and b are
natural numbers.

Given an input sequence of states or words wt (where w0 is taken to be the
initial state used for encoding) and an initial range r0 (typically [0, 2n − 1]) we
define the sequence of ranges rt as:

rt = subrangeForState(mc,wt, rt−1, wt−1) (11)

The output of the decodefixed is the value of the range rT , where T is the
first t such that length(rt) = 1. Since when that happens the range covers a
single number, the decoding process can just return that number.
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data n encoded text

0 1 [s1]
1 1 [s2]
00 2 [s1, s3]
01 2 [s1, s4]
10 2 [s2, s4]
11 2 [s2, s5]
000 3 [s1, s3]
001 3 [s1, s4, s6]
010 3 [s1, s4, s7, start, s1]
011 3 [s1, s4, s7, start, s2]
100 3 [s2, s4]
101 3 [s2, s5, s7]
110 3 [s2, s5, s8, start, s1]
111 3 [s2, s5, s8, start, s2]
0000 4 [s1, s3, start, s1]
0001 4 [s1, s3, start, s2]
0010 4 [s1, s4, s6, start, s1]
0011 4 [s1, s4, s6, start, s2]
0100 4 [s1, s4, s7, start, s1, s3]
0101 4 [s1, s4, s7, start, s1, s4]
0110 4 [s1, s4, s7, start, s2, s4]
0111 4 [s1, s4, s7, start, s2, s5]
1000 4 [s2, s4, s6]
1001 4 [s2, s4, s7]
1010 4 [s2, s5, s7]
1011 4 [s2, s5, s8, start, s1, s3]
1100 4 [s2, s5, s8, start, s1, s4, s6]
1101 4 [s2, s5, s8, start, s1, s4, s7]
1110 4 [s2, s5, s8, start, s2, s4]
1111 4 [s2, s5, s8, start, s2, s5]
00000 5 [s1, s3, start, s1, s3]
11111 5 [s2, s5, s8, start, s2, s5, s8, start, s2]

Table 1. Table of example encodings using encodefixed. Two different inputs can
encode to the same text only if they have a different length, as happens with 00 and
000. The frequencies of the different bigrams approximate the probabilities P (sn|sn−1)
from the Markov chain, and this approximation gets better as n grows (because the
space is bigger, and because of the Condition of Minimal Length, which has a higher
effect in smaller inputs). Also this table shows a very low capacity, because the Markov
chain used is very small. More comments about capacity in Section 6.
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A valid output isn’t guaranteed for all texts (sequences of words), only for
words that have been generated by using the encodefixed process described
above.

The decoding process works because it follows the same path that the encoder
process followed when generating the text, and this path leads to the original
input data. The encoder writes a sequence of words while refining subranges until
finding a range that has length 1. The decoding process follows the states written
by the encoder, which lead to exactly the same sequence of subranges. This means
that decodefixed will reach the input of encodefixed, when feed with the output
of encodefixed. This makes decodefixed acts as the inverse for encodefixed, for
fixed n.

An additional property of decodefixed as it is defined here is that if data =
decodefixed(text), then also data = decodefixed(text + text2), where text2 is
any text and ”+” is the list concatenation operation. This is because the fixed
decoding algorithm finishes computing the value for data when the last subranges
converge to a single number, and that happens at the same place in the text
sequence for text and for text+ text2.

This property is useful because it allows us to concatenate encoded texts, and
they can be decoded directly as the decoder can tell where every text starts and
ends. This is applied to the variable encoding algorithm discussed in Section 5.

4.4 Implementation Details

A direct implementation of the algorithms described above would require that
many operations are applied to the n bit ranges in every iteration of encoding and
decoding. For example, in every iteration of the fixed-size decoding algorithm, a
call to subranges needs to be done with a range of numbers with n bits of size,
until the length of the selected range is 1 (so that the range matches the original
input). This is very inefficient both regarding memory usage and processing time.

It is possible to avoid processing on the full n bits on every iteration, by
making some changes to the underlying algorithms. Some data with length n
can be processed more efficiently if only a short, moving window of a few bits is
processed in every iteration. We define subrangesfast:

subrangesfast(mc, s, rmbits, n) = subranges(mc, s, expand(rshort, n)) (12)

where rshort = [a, b] is defined to be a range where a and b are two numbers
that can be expressed in up to m bits, and expand(range,m, n) computes [a2, b2],
with a2 identical to a in all its leftmost m bits, and 0 in the remaining bits, and
with b2 identical to b in all its leftmost m bits, and 1 in the remaining bits. This
means that we can use expand to convert short ranges like [01, 10] (in binary)
to the longer 4 bit range [0100, 1011], if n = 4.

An efficient implementation of subrangesfast returns all subranges in short
form, for any input. When the ranges have to be split in a way that requires
infinite or long precision (for example if there are two states, with P (s1|s) =
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0.3 and P (s2|s) = 0.7), this is only possible if a precision limit is set in the
implementation. This precision limit can be set to mean that regardless of the
input of subrangesfast, there is a maximum number of bits that can be used for
the partitioning process.

For example, with n = 100 and the probabilities described above, the ranges
returned could be: [00000000, 01001101] for s1, and [01001110, 11111111] for
s2. In this case, s1 really has about 0.305 of the numbers of the total range, so
using 8 of the 100 bits is a good approximation. If we were to use only 4 bits in
subrangesfast for this case, it would return: [0000, 0100] for s1, and [0101, 1111]
for s2. In this case s1 maps to about 0.312 numbers of the total range; this is
a slightly worse approximation, but it might be better as it requires using only
half the amount of bits.

Both for encoding and decoding, a bit stream data structure will be needed.
For encoding, this stream of bits will be read; when decoding, it will be used to
write the data output, in a bitwise fashion.

When encoding, in every iteration subrangesfast will require a small number
of bits to be read from the bit stream. As soon as those bits are read, they can
be discarded from the bit stream. Also, subrangesfast will generate new ranges
in every call, and in every iteration these ranges will be more precise, that is,
ranges that cover a smaller amount of numbers. This means that the subranges
will require more bits to be stored.

However, if the precision for subrangesfast is set to a finite value (as described
above), the number of bits at the right of the range that differ from each other
will be at most k, for some k. This means that with every iteration, the ranges
will grow in size n, but the leftmost bits will at the same time converge bitwise
to the same values (for range [a, b], leftmost bits of a and b will be identical).
The leftmost bits can then be discarded, as they are already known to match
the leftmost bits in the input data.

This process ensures that in every iteration of encoding, subrangesfast only
has to deal with a moving window that has a limited number of bits, related to
the precision set to the system in the implementation.

Similarly for decoding; in very iteration, the range that subrangesfast returns
will grow in size (as measured in bits). However, while the range grows in size,
the leftmost bits converge, so they can be removed, and added to an output bit
stream. When the process finishes, the output bit stream will contain the full
output of the decoding algorithm: all the bits of the converged range.

5 Variable Size Encoding and Decoding

The encoding and decoding process described above only allows to decode data
from a text, given that the size of the data is known beforehand. However,
requiring the recipient of a steganographic system to know the size of the hidden
data before it is decoded is not optimal. An extension of the encoding and
decoding methods for variable-size data solves this problem.
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image chain states encoding time decoding time encoded size encoded size
file size

example.zip unigrams 91.8 s 95.3 s 81 kB 6.7
(12 kB) (0.1 kB/s) (0.1 kB/s) (zip: 32 kB) (zip: 2.7)

bigrams 53.7 s 55.8 s 149 kB 12.4
(0.2 kB/s) (0.2 kB/s) (zip: 58 kB) (zip: 4.8)

example.jpg unigrams 141 s 150.5 s 119 kB 6.3
(19 kB) (0.1 kB/s) (0.1 kB/s) (zip: 38 kB) (zip: 3.2)

(zip: 12 kB) bigrams 93.4 s 97.6 s 216 kB 11.4
(0.2 kB/s) (0.2 kB/s) (zip: 66 kB) (zip: 5.5)

example.png unigrams 299.6 s 317.2 s 269 kB 6.9
(39 kB) (0.1 kB/s) (0.1 kB/s) (zip: 104 kB) (zip: 2.7)

bigrams 194.1 s 181.8 s 494 kB 12.7
(0.2 kB/s) (0.2 kB/s) (zip: 188 kB) (zip: 4.8)

All benchmarks were run on a computer with processor Intel Core i7-2670QM CPU at
2.20GHz x 8, with 7.7 GiB RAM.

Samples of the encoded texts:

– Example.zip (unigrams): ”Be limited and secondly because Pierre suddenly real-
ized. Und die and secondly. Monotonous sound of the man who too late. Monsieur
Kiril Andreevich nicknamed the hour later grasped the Russian commanders.
Dressed for the new building with a year period of the two or an example.”

– Example.zip (bigrams): ”Be a square for fuel and kindled fires there. Secondly
it was hard to hide behind the cart and remained silent. He feels a pain in the
now cold face appeared that the man continually glanced at her as though they
stumbled and panted with fatigue. With a deep.”

– Example.jpg (unigrams): ”He had been her neighbors and friends that these wrin-
kles and then there’s no lambskin cap and saw that Russian expedition. Under
a largish piece of me all all is going on the lot of that moment I have an all four
abreast. Having evidently relating to scrutinize the nunnery. Every moment.”

– Example.jpg (bigrams): ”He had something on both sides and. Secondly it was
tete a tete. You did me the duty of a month ago. He’s having a good humored
amiable smiles. Pierre pointed to a series of actions that follows therefrom. After
playing out a passage she had all the forms of town life perished. Tell him Here.”

– Example.png (unigrams): ”Rostov a short fingers and exhausted and the driver a
bright lilac dress. And the locomotive by all seemed to the most profitable source
of Karataev and secondly. Even remember that it an enormous movements and
had to tell you want of the other troops standing. If it’s high.”

– Example.png (bigrams): ”Rostov looked inimically at Pierre and addressing all
present and rested on them. But seeing before him. Princess Mary thought only
of how Princess Mary for Prince Vasili saw that Platon did not forget what I
consider myself bound to Princess Mary will take the covert at once abandoned
all their decorations.”

Fig. 3. Example benchmarks and results when running MarkovTextStego [9] with
Markov chains generated from War and Peace by Tolstoy. MarkovTextStego uses the
method discussed in this article, and an extension that uses bigrams as states in the
Markov chain (as discussed briefly in Section 3). The bigram-based encoder will pro-
duce higher quality texts, however they will be larger than those produced by the
unigram-based encoder.
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For variable size encoding and decoding it is required that an integer m is
shared beforehand. This number is not the data size, but the size used for a
header; it is typically a small value like 16 or 32. Texts c1 and c2 are encoded as
shown below, using the three arguments version of encodefixed.

The header is encoded first, into c1. This is done using the fixed-data encoding
algorithm, with the fixed size m that is known both for encoder and decoder:

n = length(data) (13)

c1 = encodefixed(n,m, start) (14)

Once the header was encoded, the actual data is encoded into c2. We use w
as starting symbol, to ensure that there isn’t an interruption in the flow of the
generated text between the last symbol in c1 and the first one in c2:

w = last word in c1 text sequence (15)

c2 = encodefixed(data, n, w) (16)

Finally, encode(data) is defined simply as:

encode(data) = c1 + c2 (17)

That is, the encoded data is just the header text followed by the data text.
As w was used as starting symbol for generating c2, there will be no interruption
in the flow between both texts.

For decoding an input text, we define:

n′ = decodefixed(text,m, start) (18)

That is, decodefixed is used to extract the length information from the header,
using the shared value m.

text1 = list of words used in decoding n′ (19)

text2 = list of words not used in decoding n′ (20)

w′ = last of text1 (21)

Finally, decode can be defined:

decode(text) = decodefixed(text2, n′, w′) (22)

It can be seen that when data′ = decode(encode(data)), it follows that: n′ =
n, text1 = c1, text2 = c2, and w′ = w. For this reason, data′ = data, which
means that decode is the right decoding function.
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It is also possible to extend encode, without changing this last property, in
this way:

encode(data) = c1 + c2 + randomText(z) (23)

where z is the last word in c2, and randomText(symbol) generates a random
text that ends in period, using the Markov chain and starting from the given
state. This can be used to ensure that all texts generated by encode have a final
sentence that is complete, and finishes with period. Adding any text won’t affect
the decoding at all, as explained in Section 4.3.

Depending on the kind of data that is being transmitted, it might be useful
to encode into c1 the length of the data in bytes, instead of encoding it in bits.
Also, the way the length is actually represented into bits matters; if big endian
is used to represent a multi-byte length into bytes, short encoded lengths will
start with a sequence of 0 bits; this could produce the encoded texts to always
start with the same words, or with a small variety of different words (because all
leftmost bits are zero). For this reason, either little endian or a representation
that reverses the bits of big endian would be preferable.

6 Conclusions and Future Research

This article presented a steganographic method based on Markov chains that
differs from other similar models in the way precision loss in the language model
is avoided. A reference implementation for this method was also presented.

The examples shown in Table 1 could seem to show that the system has
very low capacity. However this is only because of the Markov chain used; if
the system uses a small Markov chain, it will have low capacity, but if it uses a
bigger Markov chain it will typically have a higher capacity.

Preliminary results of empirical tests using a big Markov chain computed
from an actual literary text show that the encoded data takes the size of about
6 - 7 times the size of the original data, with an n value that is big enough (for
very small n, yet bigger than a few bytes, this factor can be higher, e.g. around
9). Because the produced output is a text, it can be compressed with a high
ratio; the compressed size of the texts is about 2 times the size of the original
data. However, these results require a more complete and thorough analysis.

Other possibilities for further research are: to combine this method to other
known language based steganographic systems, for producing an overall better
steganographic text generation method; to analyze what is the actual, measured
performance for this new algorithm, and how this new algorithm compares to
other existing algorithms, in terms of stegoanalysis.
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