
Aspects of BPM/SOA: Processes, Use Cases and
Concerns

Manuel Imaz, PhD

BlendMind
Madrid. España
imaz@mac.com

Abstract. In this paper we show how BPM/SOA avoid the increas-
ing complexities added by the aspect-oriented programming (AOP) ap-
proach, mainly in relation to functional concerns. From the beginnings
of object-orientation, some difficulties derived from the uses cases model
have been detected, as they are the root of scattering and tangling. This
is the question that AOP addresses even if it uses its own jargon: con-
cerns in place of use cases. The present analysis of the problem is based
on concepts of Cognitive Semantics (CS) that allow to explain some odd
questions, such as the way of presenting the classical UML architecture
as a ’4 + 1’ –in place of 5– views. Some CS concepts, such as perspective,
focusing and profiling help to clarify some phenomena that have been an-
alyzed from a very general notion of view that needs, evidently, to be
refined in order to build more useful ideas about software engineering.

Key words: Concerns, aspects, use cases, AOP, cognitive semantics.

1 Introduction

In an earlier paper [6] we have presented the central role of categorization in
Software Engineering as an important cognitive process, similar to abstraction.
In fact, in Software Engineering we are constantly categorizing different aspects
of reality, from the initial stages –requirements elicitation– up to the final ones.
During the requirements elicitation and development we try to determine the
needs –the problem domain– and the functions or features –the solution domain–
of the system we are going to implement. There are two useful metaphors that
may be quite adequate to conceptualize what happens during the requirements
development: this is a discovery and invention process, where the needs have to
be discovered while functions or features need to be invented. There is a difference
between discovery and invention: ‘The distinction is clear even in prescientific
times: Fire was a discovery; the fireplace was an invention. That fire hardened
clay was a discovery; pottery was an invention”. [2]

After the requirements stage, we continue with the specification of the sys-
tem or application. The way we specify software has evolved through the years,

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 1



depending on the style used to conceptualize it. In terms of literary analysis it
is said that a narration has a content but equally importantly it has also a style.
Analyzing the question from a cognitive point of view –in particular from the
point of view of Cognitive Semantics (CS)– it can be stated that:

In viewing a scene, what we actually see depends on how closely we
examine it, what we choose to look at, which elements we pay most at-
tention to, and where we view it from. The corresponding labels I will
use, for broad classes of construal phenomena, are specificity , focus-
ing , prominence, and perspective. They apply to conceptions in any
domain. [12] p. 66 (bolds in the original)

When specifying software it is evident that styles have been changing mainly
in function of the focus, that is, what we choose to look at and also in function
of the perspective. In a first time, the focus has been put on the procedures, the
processes performed on data. This style is known as data flow representation,
where the processes are specified as circles or bubbles and data are a means of
connecting those bubbles. Following this style the focus was put on data objects
or simply objects that travel through the data flows, but including in these
objects the specific pieces of processes –called methods– applied to them. This
evolution has finally lead us to focus on a broader scene, the business processes
with activities and data objects to which these activities are applied.

The difference between business processes and data flow diagrams is the way
we conceptualize them, as in the former we see a spatially distributed network of
fine or medium grained processes while in the latter we consider coarse grained
processes or conceptual process packages. In object orientation the packages are
the data objects with the pieces of processes that are applied to them. So, in
data flow diagrams we consider conceptual packages of processes independently
of the spatial situation of such processes in a workflow and the data objects to
which they are applied, while in object orientation the different processes applied
to a data object are compressed into a conceptual package.

In order to show the difference between business processes and data flow and
object oriented approaches, it is also necessary to use the perspective dimension
of language, that is, the viewpoint from which we are observing the scene. Both
data flow diagrams and object orientation are observed from the inside of the
system to be developed, while business processes are observed from the inside
of the enterprise or organization. These distinctions are more precisely defined
using the concepts of focusing and prominence, described in the next section.

2 Cognitive Semantics

There are two approaches to semantics. The classical one –or realistic– considers
that the meaning of an expression is something out there in the world. The
semantic of table, for example, is a matching between the word table and a
real world object. Cognitive semantics, on the other hand, identifies meanings
of expressions with mental entities. [1]

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 2



Leonard Talmy states that Cognitive Semantics is the study of the way con-
ceptual content is organized in language. In Talmy’s view, a sentence (or other
portion of discourse) does not objectively represent its referent scene –it is not
something out there in the world–, but it evokes in the listener a cognitive rep-
resentation, defined as an emergent, compounded by various cognitive processes
out of the referential meanings of the sentence elements, understanding of the
present situation, general knowledge, and so on [16] p. 93, note 2.

Historically, science has tried to be consistent with the need for objectivity
eliminating the subject from the scientific discourse. The same effort has been
assumed by the software engineering community when using a disembodied dis-
course, but the failure of this intention is unmasked when analyzing in detail
some conceptual structures in which the subject surreptitiously reappears, as
–for example– the concept of perspective implies an object and a subject and
the concept of focusing implies that the subject is using his visual capacity (as
Langacker defines it: ”what we choose to look at” [12]).

Another aspect of cognitive semantics is that the conceptual structure is
embodied, that is, the nature of the human mind is largely determined by the
form of the human body. But the form of the human body must be understood in
a broad sense, meaning the human being in an environment, in a given situation
–cultural, social, and so on– as some concepts of CS imply. For example, in the
previous section we have mentioned the concepts of focusing, perspective and so
on. It is evident that a perspective implies a subject observing a scene from a
given point of view, that is, a subject in a given situation.

The concept of perspective allows us to make a difference between observing a
software system from an internal or external point of view, and conceptualizing
the internals of the software system or a general viewpoint that encompasses
the business processes running in the enterprise. The concept of perspective is
represented in (Fig. 1):

When focusing on the computer system we need additional concepts in order
to use different categories applied to the same system. Besides what we choose
to look at –focusing– we need to take into consideration which elements we pay
most attention to or prominence, in particular one sort of prominence: profiling.
Langacker states that:

As the basis for its meaning, an expression selects a certain body
of conceptual content. Let us call this its conceptual base. Construed
broadly, an expression’s conceptual base is identified as its maximal scope
in all domains of its matrix (or all domains accessed on a given occasion).
Construed more narrowly, its base is identified as the immediate scope
in active domains –that is, the portion put ‘onstage” and foregrounded
as the general locus of viewing attention. Within this onstage region,
attention is directed to a particular substructure, called the profile. [12]
p. 66 (bolds in the original)

In our example, one conceptual base is the computer system and the profile
may be a process or a data flow –a particular substructure– or an object in

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 3



another profile. That is, the same conceptual base may be considered in terms of
different profiles: data flows and processes or objects. Both ways of categorizing
the computer system are different types of conceptual integrations or blends
(which will be considered in the next section). On the other hand, a conceptual
base such as a business process, may be profiled in terms of tasks, decision
points, etc., or may be also profiled as use cases, that is, subsets of the business
process in which some actors –users– interact with software components in order
to achieve a goal.

3 Metaphors and Blends

Metaphor is a cross-domain mapping –conceptualizing one domain in terms of
another– and is central to our thinking process. The first domain –the well
known– is called the source domain while the new one –less known– is the target
domain. The usual idea we have of a metaphor is that of a literary figure whereby
we say something using a figurative expression. In fact, the figurative expression
is the external manifestation of an underlying cognitive process: that is precisely
the conceptual metaphor.

An important and well-known metaphor –in relation to ontologies– is the con-
duit metaphor, first analyzed by Reddy [14]. This metaphor reflects quite singu-
larly the objectivist philosophy: the mind contains thoughts, language transmits
ideas, human communication achieves the physical transfer of thoughts and feel-
ings, etc. and it is embodied in many expressions which are manifestations of
the metaphor:

You have to put each concept into words very carefully.
Try to pack more thoughts into fewer words.

Reddy’s assertions regarding the underlying cognitive processes are similar to
those used currently by cognitive semantics, proposing that texts are instructions
to create mental spaces (patterns of thought, in Reddy’s terms) which, as any
active complex process, will re-create, re-enact meaning.

There is another way of conceptualizing both terms of a metaphor (source
and target domains), using the concept of mental space. The concept of mental
space refers to partial cognitive structures that emerge when we think and talk
‘allowing a fine-grained partitioning of our discourse and knowledge structures’.
[3]

Finally, a conceptual integration or blend [4] is an operation that could be
applied to a couple of input spaces, which gives as a result a blended space or
blend. The blend receives a partial structure from both input spaces but has an
emergent structure of its own.

One important example of blend is that of imaginary numbers, first showed
up in the formulas of the sixteenth-century. The authors Cardan and Bombelli
considered imaginary numbers only as notational expedients, with no conceptual
basis (they were called sophistic, imaginary, impossible).

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 4



This is an interesting example not only because it is an illustration of how
blends are also created in science taking sometimes many years, but also because
its initial status was not ontological at all -instead, it was its practical usefulness
that allowed the concept to survive- to end up, after an epistemological elab-
oration, as a very concrete and useful theory in mathematics. Rolando Garćıa
asserts that in cases like this one, as well as in many others, there is no ontology
without an epistemology.[5]

The important point is that the intertwined relations between both philo-
sophical disciplines -Ontology and Epistemology- derived in a new approach
called by Garćıa as Constructivist Epistemology, meaning that we need to think
of scientific explanation as ascribing to the empiric relationships –to external
reality– the necessary connections which are verified in the logico-mathematical
structures of scientific theories. This constructivist approach to epistemology,
when applied to IT domains, results in taking as existent what has been built
–results or elaborations– in previous stages of the disciplines. For example, the
blend built to framing a class –as in UML, with three containers for a name, the
attributes, and the operations– is one of the two input mental spaces used to
build a new, concrete class, as the invoice class.

Data-flow diagrams (DFD) are based on a metaphor. Even if one process
is also categorized as a container and its structure is determined by another
data-flow diagram at a lower level, the main metaphor on which the model is
based is THE SYSTEM IS AN INDUSTRIAL PLANT. In such a plant, there
is a collection of processes interconnected by pipes or assembly lines. The raw
material for one process originates from other processes, external sources, or
stores containing by-products of yet other processes. [7] pag. 89

The paradigm of object orientation has its own constitutive metaphor: THE
SYSTEM IS A SOCIETY OF PEOPLE. Object orientation is full of expressions
based on this metaphor. Objects have responsibilities, they collaborate with each
other, they have acquaintance of other objects, they communicate, they have a
defined behavior, and so on. [7] p. 90

In an invoice object, for example, we have a mental space that corresponds
to a frame of three containers: one for a name, another for attributes and a third
for operations. Another mental space corresponds to a real world entity –a piece
of paper with data– but there are other mental spaces with activities performed
on the invoice. So we incorporate into the blend the actions that some agents
will perform on the entity we are modeling. In order to get a complete set of
mental spaces, we need to analyze the different stages of the invoice in its whole
business story or life cycle. So in general, there may be several other mental
spaces that provide a source of behavior in terms of operations.

As a consequence of creating the blend, there will be –in a class– an emergent
structure compared to the input mental spaces. We may see that an invoice class
–in contrast to a real-world invoice– will generate objects capable of producing
events or sending messages to other objects. This behavior is something that
real, inanimate invoices, cannot do. [7] p. 95

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 5



4 Perspectives and Conceptualization

Restoring the subject in the discourse means to make visible some aspects that
normally remain hidden. When talking about a software system we may adopt
different perspectives that usually are implicit in the language but when making
them explicit they may suggest to us interesting questions. One point is that
each perspective may have different views, as it may be seen in the internal
perspective.

The more frequent perspectives adopted to describe a software system are
shown in the following figure (Fig. 1).

Fig. 1. Different perspectives: the internal, the external and the scenario perspectives

When using the concepts defined by Langacker: specificity, focusing, promi-
nence and perspective we must remember that the sense of vision is not a merely
passive, photographic one, but a very complex construction as shown by Fran-
cisco Varela [17], p. 332:

A first-group of animals [cats] was allowed to move around normally
while harnessed to a yoke; their gross movements were transferred me-
chanically to a second group of animals conveyed in gondolas. The two
groups shared the same visual experience, but the second group was en-
tirely passive. When the animals were released after a few weeks of this
treatment, the first group of kittens behaved normally, but those who had
been carried around behaved as if they were blind: they bumped into ob-
jects and fell over edges. This marvelous study supports the enactive
view that objects are not seen by the visual extraction of features, but
rather by the visual guidance of action. Similar results have been ob-
tained under various other circumstances and studied even at the single-
cell level. (bolds in the original)

So, what is implied in last resort is an embodied concept, jointly determined
by a physical perception and bodily actions and with additional cognitive con-

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 6



structs. The sense of vision is frequently used as a metaphorical concept as when
we say ‘I see what you mean by that’. It is in this sense that we will use the
concepts defined by the CS.

Each perspective implies its own views, as in the internal perspective, which
has been represented in Fig. 1 using two views (process and logical) of the set of
views defined in UML. While in the three concepts of perspective, focusing and
specificity the visual metaphor is quite direct, the concept of profiling deserves
some additional comments. Langacker ([12] pp. 66-67) points out that:

The profile can also be characterized as what the expression is con-
ceived as designating or referring to within its base (its conceptual ref-
erent). . . In fact, it is quite common that two or more expressions evoke
the same conceptual content yet differ in meaning by virtue of profiling
different substructures within this common base. For instance, Monday,
Tuesday, Wednesday, etc. all evoke as their base the conception of a
seven-day cycle constituting a week, within which they profile different
segments. (bolds in the original)

As the Langacker’s example shows, both the structure and the substructures
are conceptual constructions, based on framing a conceptual base –the week–
in terms of another conceptual units –the days. So, we can choose different
conceptual frames to profile the elements that make up a software product.

Thus, in the internal perspective we can choose a profiling based on differ-
ent metaphors, in particular the THE SYSTEM IS AN INDUSTRIAL PLANT
metaphor, which works as a frame to see processes and connections among them
as well as data stores and even, in some cases, external interactors. These are
different views when changing the focusing (what we choose to look at). We
may also go from the analysis to the design varying the specificity (how closely
we examine it) and go, for example, into the processes (viewed in the analysis)
to find modules (viewed in the design), which are organized in an hierarchical
structure.

An alternate profiling of the internal perspective is using the THE SYSTEM
IS A SOCIETY OF PEOPLE metaphor, on which some blends are built, in
particular classes. The blends are categorized into groups that correspond to
different views when changing the focusing: considering the static, structural
aspects we get the logical view, while when considering the dynamic aspects we
get a process view. In this perspective and profiling there are also, when changing
the focusing, other views, such as the physical view and the development view.

An interesting point in relation to views is that all of them are orthogonal or
complementary, that is, none of the views may be translated into another view.
The whole view is the addition of all the previously ones: logical, process, and
so on. As each view is the result of catching a different partial sight, the whole
view is necessarily the addition of all of them.

The external perspective implies observing the system as a whole and the way
of conceptualizing it is by using a name or syntagm. When the system software
matches a previously existent activity in a domain, the name used is derived from

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 7



the domain as in the examples of invoicing, general ledger, order management
or payroll. This way of conceptualizing brings nothing new to the system to
be implemented, except the experience provided by the software engineer and
explains the symptoms pointed out by Yourdon ([18], p. 360) in relation to the
top-down problem: ‘analysis paralysis’, the ‘six analyst’ phenomenon, or the
‘arbitrary physical partitioning’. The top-down method results from gradually
changing the specificity of a perspective.

There is also a very frequent use of figurative or metaphorical names to con-
ceptualize a software system. Names such as broker, bus, framework or virus are
usual examples of this way of conceptualizing. The advantage of a metaphorical
naming is that the source domain contributes with a rich set of features that may
be translated into the target domain, that is, the system to be implemented.

The scenario perspective includes the possible interactions of users –human
and not human– with the system. This perspective needs its own representa-
tion, that is –as usually occurs with scenarios– a dialog, script or description of
interactions. As in the scenario we find human users, with intentions, goals or
concerns about the system to be implemented, usually these goals or concerns
are included in the conceptualization of the scenario. The sentence withdraw
money is, at the same time, the description of a scenario but also the goal of the
user involved in such scenario.

5 Some Problems with Use Cases considered as Object
Oriented Constructs

The way of presenting in UML the ’4 + 1’ views already was a symptom. Ac-
cording to Kruchten, these views are the description of an architecture and can
be organized around these four views, and then illustrated by a few selected use
cases, or scenarios which become a fifth view [10]. This comment shows that
there is something heterogeneous between use cases and the other views, even if
the author call all of them views. The question would be: why the use cases view
is different from the other views to the extent Kruchten uses a different symbol
–an ellipse– in place of a rectangle?

As we have seen in the Perspectives and Conceptualization section, use cases
belong to the scenario perspective and the four object-oriented views belong to
another perspective –the internal perspective– of the software product, that is,
the OO views and the use case view –according to Kruchten– correspond to
two different perspectives of our definition (with their focus and profiles). And
each perspective needs a specific representation as the focus leads to perceive
different facets of the same product. That explains the heterogeneity between
the first four views and the last one, and why the consideration of use cases as
object oriented constructs gives rise to some problems that have required specific
solutions.

Jacobson points out in his paper [8] that to achieve use case modularity it
needed two mechanisms: a separation mechanism and a composition one. He

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 8



focused on the separation mechanism, which allowed to keep most use cases
separate, but leaving aside the composition mechanism.

For example, it has been recognized that there are basic use cases, each one
being independent of the others. However, some use cases –extension use cases–
depend on other, more basic, use cases to work. In terms of object orientation,
the solution may be to create subtypes –using the inheritance mechanism– from
a base use case resulting in an extended use case. But the solution does not allow
us to modify the base use case, for this we need a new mechanism –an extension–
in order to add new functionalities.

Using the extend mechanism we get extension use cases and iterating the
same extension mechanism the use case continues to grow but keeping also most
use cases separate all the way down to code and even to executables. But this
is not a clear and simple mechanism: even recently it has been shown that
the Achilles’ heel of use cases is the unclear UML semantics, in particular the
definition of the extend relationship. [11]

When dealing with object orientation, we can verify that use cases are realized
in multiple classes and conversely, each class includes portions of multiple use
cases. In the jargon of object orientation these characteristics are called scattering
and tangling respectively. [8] These characteristics are usually represented as in
the example of Fig. 2.

Fig. 2. Scattering and Tangling

This characteristic is known as crosscutting, meaning that a given concern
usually spans layers and tiers of an application. The question is that at the
same time that a crosscutting concern affects the entire application –implying
the scattering– it should be centralized (included in a separate module) in one
location where possible in order to help create a quality and maintainable soft-
ware.

The question is still more complex when the paradigm of object orientation is
applied to use cases, as they are not derived from a software product perspective

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 9



but from an enterprise perspective. In a use case model it is possible to use object
oriented concepts, for example, generalization. At such an abstract level, nothing
prevents us from generalizing or specializing use cases the same way we generalize
or specialize classes. But the problem arises when we try a use case realization
that has to reuse a more abstract use case realization. As Jacobson explain [8]:

However, the extension mechanisms provided between use cases didn’t
make it to collaborations; I simply couldn’t make a case for this since
we had no mainstream programming language supporting the implemen-
tation of extensions as we now will have with AOP. Consequently, it is
not possible to separate extension use cases from base use cases in de-
sign and implementation. The realization of the extension use case has
to be dissolved into the realization of the base use case, and the base use
case cannot be oblivious of the extension use case. So we do not have a
fully seamless transition from use case modeling to design –realization
of extension use cases has to be intermingled with the realiza-
tions of base use cases.(bolds in the original)

The difficulty comes from mixing heterogeneous conceptualizations: use cases
and objets. The ideal solution would have been to get separate modules from
extension use cases the same way we produce classes and subclasses as separate
components. Here we need two kinds of modules: use case modules and compo-
nent modules. Jacobson states that Aspect Oriented Programming (AOP) has
come to the aid of these problems, allowing to create a new kind of module: use
case modules.

6 Requirements and Concerns

Some definitions of a requirement state that it is a software capability needed
by the user to solve a problem, to achieve an objective. An alternate definition
refers to capabilities that must be met or possessed by a system or system com-
ponent to satisfy a contract, standard, specification, or other formally imposed
documentation. [13]

In other words, the requirements for a system are the descriptions of what
the system should do, even if the term is not a well defined one. As Sommerville
[15] points out:

The term requirement is not used consistently in the software industry.
In some cases, a requirement is simply a high-level, abstract statement
of a service that a system should provide or a constraint on a system. At
the other extreme, it is a detailed, formal definition of a system function.

There are other concepts related to requirements, such as needs and features,
aimed to refine the sometimes high-level, abstract statement. The users are in a
given environment and have business or technical problems that they need the
software engineer’s help to solve, these are the user’s needs. In addition we may

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 10



consider features as a service provided by the system that fulfills one or more
stakeholder’s needs.[13]

On the other hand, the AOP community uses the new concept of concern.
Among the definitions of concern found in dictionaries we can point out these
two: “To engage the attention of” and “Regard for or interest in someone or
something”. Both definitions are related to the CS definition of focusing, which
we have been using in addition to perspective and profiling. We talk about user or
stakeholder concerns referring to what can be stated as requirements, functional
and non functional. The concept of concern is closely related to human intentions,
goals or objectives.

But in the AOP community they have modified concern by crosscutting con-
cern, indicating that programming languages decompose concerns into separate,
independent entities by providing abstractions (e.g., classes, modules or proce-
dures) that can be used for implementing these concerns. Some of these concerns
defy these forms of implementation and are called crosscutting concerns because
they ”cut across” multiples abstractions in a program or component.

In 1986 Ivar Jacobson first formulated the concept of use cases –originally
called usage scenarios and usage case– as a textual, structural and visual mod-
eling technique. Interestingly, the term usage scenarios points to the idea of
perspective –the scenario perspective–and the associated cognitive framework.
It was a great idea to include a business perspective –which includes users and
their intentions and objectives, their concerns– in addition to the software sys-
tem perspective exposed in the object oriented constructs. What the previous
paradigm –structured analysis and design– lacked was precisely the business per-
spective –with systems and users– to specify requirements and this old approach
implied to directly specify an analysis view from a set of statements more or less
well constructed.

The success of use cases may be attached to the chosen perspective, as the
visualization of a business process is something that may be perceived more
directly (recognizing that perception is not a passive sense but one that im-
plies continuos reorganizations and incremental capacities) when observing the
enterprise. The advantage of use cases compared to requirements expressed as
high-level abstract statements is a more concrete profiling, as we visualize the
use of a particular function or service of the application as interactions between
some users and the software itself.

7 Aspects and Use Cases

In AOP the goal is to reorganize the source code in order to recompose the
concerns as modules. This is fundamentally a programming task using metalan-
guages that allow to encapsulate fragments of code that are distributed among
various components. The composition resulting from this reorganization is called
an aspect. The reason for building aspects is a better understanding and mainte-
nance of the software application, as each concern may be matched to a module.

The problem is explaind by Jacobson [8]:

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 11



We tried to specify and design them as separate units, however, when
implementing the use cases, they were integrated to a mass from which
it was impossible to identify which use case was being implemented by
which piece of code. Or, in other words, the use cases were dissolved
into the code, and distilling them from the code was far from
easy. (bolds in the original)

It is funny to observe that in AOP the original concerns –the requirements–
are known as early concerns. This conceptualization is the result, evidently, of
a given perspective: in this case, from the construction phase. AOP focus its
interest in the code reorganization task, where concerns are recomposed into
modules –the aspects– and so the elicitation phase is an early one.

Jacobson, in a book that extents his ideas about AOP [9], explains that:

It is well known that aspect orientation helps modularize crosscutting
concerns during implementation, but there is a need to modularize cross-
cutting concerns much earlier, even during requirements. Use-cases are
an excellent technique for this purpose. Use-cases are crosscutting con-
cerns, since the realization of use cases touches several classes. In fact,
you can model most crosscutting concerns with use-cases, and we demon-
strate use-case modeling in the book.

The emergence of BPM/SOA lead us to compare business processes and use
cases. When defining a business process as a set of related, structured activities
or tasks that produce a specific service –satisfy a particular goal– for a particular
customer, we verify that the definition may be equally applied to use cases. A use
case is usually defined as a list of steps, typically defining interactions between
a role and a system, to achieve a goal. This similarity allows us to state that a
use case may be an activity, a subprocess or the business process itself.

The cross-cutting phenomenon is the result of having to translate the use
cases into constructs of a different perspective, that is in object-oriented con-
structs such as classes and components. The ideal solution would be to have
the possibility of directly executing the set of interactions that make up the use
cases.

When representing business processes with an appropriate language, it is pos-
sible to directly run this representation.This way, we maintain the early concern
–the use case– as a module without the need of using a composition mechanism,
such as addressed by AOP.

Something equivalent to the phenomenon of cross-cutting also appears in a
linear narrative, whether technical or not. In a narrative about a given sub-
ject there is a linear discourse that has many references to other subjects. The
traditional solution in printed articles or books has been the use of a set of
mechanisms in terms of calls to the footer, to references, to other sections of
text, etc. In a biography (the main concern), the linear narration of the life, for
example, of an important computer science personality is cross-cut by multiple
areas of interest: childhood and youth, university and work on computability,
cryptanalysis and so on.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 12



The idea of hypertext has enabled the possibility of showing the main text –
the concern– with other areas of interest traversing it. In the case of a biography
the text is usually embedded –in a mobile device, for example– with a number of
icons to insert the text corresponding to the multiple specific areas (childhood
and youth, cryptanalysis, etc). Each insertion corresponds to a new level of
specificity. We may have the global picture –the whole concern– and gradually
insert different cross-cut areas of interest. This form of presenting the biography
allows a good maintainability of the whole concern and the specific areas of
interest that cross-cut the concern.

This hypertext mechanism would also allow a similar easy maintainability of
software, provided that the features of import/export would be included in the
programming languages in order to see the specific components (for example,
attributes and methods of classes, components of composite components) that
realize the main concern (use case) importing and including them in the main
text.

8 BPM/SOA and Concerns

In Fig. 2 we have a representation of a group of use cases, which are realized as
collaborations and, finally, those collaborations realized as a set of components.
The usefulness of use cases is due to its way of representing concerns (require-
ments). In terms of AOP, we can represent early concerns as use cases and finally
–at the implementation time– represent the same concerns as aspects. But the
advantages of use cases as concern representations disappear when they are scat-
tered into groups of components. There is a hard work to represent, then lose in
translation and finally recompose, at implementation time, the concerns.

There is no ideal solution to the problem, but the way of representation of
concerns as business process diagrams is a great advantage over the classical
representation of use cases. Business process diagrams, when created with a
Business Process Management (BPM) tool and an adequate notation as BPMN
2.0, do not vanish as use cases do in translation, but remain intact and are
executables as such until a new version is created.

At this point it is important to make the difference between BPM solutions
that, as the classical code generation tools, generate all the code necessary to
execute the process, and the BPM/SOA architecture where the process activities
are associated with services. The services are implemented with pieces of software
derived from legacy systems or software built specifically with this purpose.

On the other hand, there are also SOC solutions, that is Service Oriented
Computing. The question is that this approach aims at implementing distributed
applications based on the interactions of services, as an assembling of services
that enhance the reusing of components. But SOC is not based on business
processes and the concerns must be treated as AOP proposes to get aspects.

A use case may be a task, a subprocess or a whole business process. The
aim was to indicate the usefulness of use cases as a result of adopting a different
perspective. But business processes are better understood by users and they are

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 13



persistent in the same representation, the BPM language, (and portable to other
platforms, for example) through all the stages of the development.

But the question of scattering remains. The difference is that each task in
the business process may be implemented as a service, that is, a component
and then it is not necessary to recompose the concern in order to ensure a
good understandability and maintenance. The service may be implemented as a
component and the component may be composed, in turn, as a collaboration of
other components, for example classes. In this case, the service may be allocated
to different components, each one containing code fragments of other services.

There is a granularity size difference between concerns –that may cover a
whole business process– and services and so the complexity of the underlying
components is also decreased. Some solutions have been suggested such as partial
classes in order to spread classes over separate files and matching each file to a
different service, for example. The management of services greatly simplifies the
maintenance of the whole business process that is not longer implemented as a
whole block of software.

9 Conclusions

We have seen that, in relation to the scattering and tangling phenomena, the
heterogeneity of the four object-oriented views and the use cases view –as be-
longing to different perspectives– and their representations is the cause of the
cross-cutting phenomenon and the solutions proposed by AOP.

This is the main reason why use cases crosscut the other representations
(classes, components and so on): use cases must be translated into other rep-
resentations, belonging to a different perspective. Different representations in
the same perspective do not crosscut as the practice of UML confirms because
they are complementary: we depict the structure of objects in the logical view
and afterwards the behavior of them in the process view. Or, after depicting
the components and its behavior, we can show where they will be executed
in the physical view. The representations of the same perspective are additive:
the whole view –what has been called the architecture– is the integration of all
representations.

As a way of avoiding the increasing complexities of developing software sys-
tems using AOP, the BPM/SOA approach greatly simplifies the development
as it eliminates the need for creating aspects from the functional concerns. The
concerns are directly represented as business process diagrams that remain –in
contrast to use cases– throughout the entire process of development and eventu-
ally are executed. The business process representation has languages and tools
that simplify the maintenance and the visibility of processes, with the ability
to see the components of activities and even the execution of processes and
activities.

The question of non-functional concerns (as security) remain but in a ser-
vice oriented approach these concerns may be encapsulated in specific services
with which the business services will interact. The separation of concerns is re-

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 14



alized as a set of independent loose coupled services, greatly decreasing –or even
eliminating– the need to use AOP and increasing the reusability because they
are reusable business services that comprise people, processes, and systems and
not merely technical ones.

Acknowledgements The author is grateful to Mauricio Milchberg for his re-
vision of the manuscript and valuable comments.

References

1. Allwood, J. and Gärdenfors, P. (eds.): Cognitive Semantics: Meaning and Cogni-
tion. John Benjamins Publishing Company. Amsterdam/Philadelphia. (1999)

2. Burton, R.: Hedy Lamarr: The Most Beautiful Woman in Film. The University
Press of Kentucky. (2010)

3. Fauconnier, G.: Mappings in thought and language. Cambridge, Cambridge Uni-
versity Press. (1997)

4. Fauconnier, G. and Turner, M.: The Way We Think: Conceptual Blending and the
Minds Hidden Complexities. Basic Books. (2002)

5. Garćıa, R.: El conocimiento en construcción. De las formulaciones de Jean Piaget
a la teoŕıa de sistemas complejos. Gedisa Editorial. Barcelona. Spain. (2000)

6. Imaz, M.: Abstracción y Conceptualización: Un Enfoque Cognitivo. 40 JAIIO,
Jornadas Argentinas de Informática, 29 de Agosto al 2 de Septiembre de 2011,
Córdoba, Argentina. Anales 40 JAIIO /CD40JAIIO/T2011/ASSE/603.pdf (2011)

7. Imaz, M. and Benyon, D: Designing with Blends. MIT Press. (2007).
8. Jacobson, I.: Use Cases and Aspects – Working Seamlessly Together, in

Journal of Object Technology, vol. 2, no. 4, July-August 2003, pp. 7-28.
http://www.jot.fm/issues/issue 2003 07/column1/

9. Jacobson, I. and Ng, P.: Aspect-Oriented Software Development with Use Cases.
Addison Wesley Professional. (2005)

10. Kruchten, P.: Architectural Blueprints – The 4+1 View Model of Software Archi-
tecture. IEEE Software 12 (6) November 1995, pp. 42-50. (1995)

11. Laguna, M., Marqués, J., and Crespo, Y.: On the Semantics of the Extend Rela-
tionship in Use Case Models: Open-Closed Principle or Clairvoyance? CAiSE 2010,
LNCS 6051, pp. 409–423, Y. B. Pernici (Ed.), Springer-Verlag Berlin Heidelberg.
(2010)

12. Langacker, R.: Cognitive Grammar: A Basic Introduction. Oxford University Press,
Inc., New York. (2008)

13. Leffingwell, D. and Widrig, D.: Managing Software Requirements: A Use Case
Approach, Second Edition. Addison Wesley. (2003)

14. Reddy, M.: The conduit metaphor: A case of frame conflict in our language about
language. In Metaphor and Thought . Ortony, A. (Ed.). 2nd. edition. Cambridge
University Press. (1993).

15. Sommerville, I.: Software Engineering. Ninth Edition. Addison Wesley. (2011)
16. Talmy, L.: Toward a Cognitive Semantics. Vol. 1, Concept structuring systems.

Cambridge, MA: MIT Press. (2000)
17. Varela, F.: The Reenchantment of the Concrete. In Incorporations, pp. 320-39.

Crary and Kwinter (Eds). Zone Books. (1992)
18. Yourdon, E.: Modern Structured Analysis. Englewood Cliffs, NJ: Prentice Hall.

(1989)

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 15




