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Abstract. Because of the increasing availability of multi-core machines, clus-
ters, Grids, and combinations of these, there is now plenty of computational
power. However, today’s programmers are not fully prepared to exploit distri-
bution and parallelism. In this sense, the Java language has helped in handling
the heterogeneity of such environments, but there is a lack of facilities to easily
distributing and parallelizing applications. One solution to mitigate this prob-
lem seems to be the synthesis of semi-automatic parallelism and Parallelism as
a Concern (PaaC), which promotes parallelizing applications along with as little
modifications on sequential codes as possible. In this paper, we discuss a new
approach that aims at overcoming the drawbacks of current Java-based parallel
and distributed development tools.

Keywords: Parallel software development, distributed computing, fork-join syn-
chronization patterns, Java, EasyFJP

1 Introduction and problem statement

The rise of powerful execution environments doubtlessly calls for new parallel
and distributed programming tools. Many existing tools remain hard to use for
non-experienced programmers, and prioritize performance over other important
attributes such as code invasiveness and execution environment independence.
Simple parallel programming models are essential for helping “sequential” de-
velopers to gradually move into the mainstream. Low code invasiveness and en-
vironment neutrality are also important since they allow for hiding parallelism
and distribution from applications.

In dealing with the software diversity of such environments –specially dis-
tributed ones– Java is interesting as it offers platform independence and com-
petitive performance compared to conventional languages. However, most Java
tools have focused on running on one environment. Besides, they often offer de-
velopers APIs for programmatically coordinating subcomputations. This needs
knowledge on parallel/distributed programming, and output codes are tied to the
library employed, compromising code maintainability and portability to other
libraries. All in all, parallel programming is nowadays the rule and not the ex-
ception. Hence, researchers and software vendors have put on their agenda the
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long-expected goal of versatile parallel tools delivering minimum development
effort and code intrusiveness.

To date, several Java tools for scaling CPU-hungry applications have been
proposed. Regarding multicore programming, Doug Lea’s framework [1] and
JCilk [2] extend the Java runtime library with concurrency primitives. Alter-
natively, JAC [3] separates application logic from thread management via an-
notations. Duarte et al. [4] address the same goal by automatically deriving
thread-enabled codes from sequential ones based on algebraic laws. Regard-
ing cluster/Grid programming, most tools offer APIs to manually create and
coordinate parallel computations (e.g. JavaSymphony [5], JCluster [6], JR [7],
VCluster [8] and Satin [9]). A distinctive feature of them compared to other Java
libraries for building classical master-worker applications such as GridGain [10]
or JPPF [11] is that the former group supports complex parallel applications
structures. All in all, tools in both groups are designed for programming parallel
codes rather than transforming ordinary codes to cluster and Grid-aware ones.

Regardless the environment, parallel programming can be classified into im-
plicit and explicit [12]. The former allows programmers to write applications
without thinking about parallelism, which is automatically performed by the
runtime system, but performance may be suboptimal. Explicit parallelism sup-
plies APIs so that developers have more control over parallel execution to im-
plement efficient applications, but the burden of managing parallelism falls on
them. Although designed with simplicity in mind, most efforts are still inspired
by explicit parallelism. Parallelizing applications requires learning parallel pro-
gramming APIs. From a software engineering standpoint, parallelized codes are
hard to maintain and port to other libraries. In addition, these approaches lead
to source code that contains not only statements for managing subcomputations
but also for tuning applications. This makes such tuning logic obsolete when an
application is ported for example from a cluster to a Grid.

An alternative approach to traditional explicit parallelism is to treat paral-
lelism as a concern, thus avoiding mixing application logic with code imple-
menting parallel behavior (Table 1). This has gained momentum as reflected
by Java tools that partly or entirely rely on mechanisms for separation of con-
cerns, e.g. code annotations (JAC [3]), metaobjects (ProActive [13]) and Depen-
dency Injection (JGRIM [14]). Other efforts support the same idea through AOP,
and skeletons, which capture recurring parallel programming patterns such as
pipes and heartbeats in an application-agnostic way. Skeletons are instantiated
by wrapping sequential codes or specializing framework classes, as in [15,16].

Current approaches pursuing PaaC fall short with respect to applicability,
code intrusiveness and expertise. Tools designed to exploit single machines
are usually not applicable to clusters/Grids, and approaches designed to exploit
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Languages such as

High Performance

Fortran, Microsoft's

Axum, MATLAB

M-code, etc.

Examples

- Code Annotations

- Metaobjects

- Dependency Injection

- AOP

- Non-invasive Skeletons

- Generative programming

- API functions

- Method-level compiler 

directives

Is the source code of the sequential 

application manually modified to 

introduce parallelism?

Is the programmer aware of 

parallelism?

NO

NO

YES

YES

NO (or aiming to)

Implicit

parallelism

Explicit parallelism

Parallelism as a Concern

(PaaC)

Invasive

parallelism

YES

Table 1. Parallelism in Java: Taxonomy (adapted from [17])

these settings incur in overheads when used in multicore machines. Moreover,
approaches based on annotations require explicit modifications to insert paral-
lelism and application-specific optimizations that obscure final codes. Metaob-
jects and specially AOP cope with this problem, but at the expense of incepting
another programming paradigm. Lastly, tools providing support for various par-
allel patterns feature good applicability in respect to the variety of applications
that can be parallelized, but require solid knowledge on parallel programming.

We propose EasyFJP, a tool aimed at unexperienced developers that of-
fers means for parallelizing sequential applications. EasyFJP exploits PaaC by
adopting a base programming model providing opportunities for enabling im-
plicit nevertheless versatile forms of parallelism. EasyFJP also employs genera-
tive programming to build code that leverages existing parallel libraries for var-
ious environments. Developers proficient in parallel programming can further
optimize generated codes via an explicit, but non-invasive tuning framework.
EasyFJP is an ongoing project for which encouraging results in the context of
the Satin library has been obtained [17]. In this paper, we show the various ex-
tensions and adaptations to EasyFJP in order to support another class of libraries
in general and the well-known GridGain library in particular.

The paper is organized as follows. Section 2 introduces the concept of fork-
join parallelism. Then, Section 3 overviews the EasyFJP project and its main
technical aspects. In Section 4 an implementation of EasyFJP is explained in
detail. En empirical validation of EasyFJP implementation with several variants
is reported in Section 5. Finally, Section 6 concludes the paper and presents
some future research works.
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2 Fork-join parallelism: Basic concepts

Fork-join parallelism (FJP) is a simple but effective technique that expresses
parallelism via two primitives: fork, which starts the execution of a method in
parallel, and join, which blocks a caller until the execution of methods finishes.
FJP represents an alternative to threads, which have received criticism due to
their inherent complexity. In fact, Java, which has offered threads as first-class
citizens for years, includes now an FJP framework for multicore CPUs, which
is based on Doug Lea’s work.

Execution Unit Join/Wait for resultFork Execution Finished

Some Class Task 2 Task 1

New

New

Return

Return

class SomeClass {

void someMethod (){

     ...

     fork ( task1 );

     fork ( task2 );

     ...

     SFJ ( task2 ); /* Block until

                                        task2 finishes */

     ... // Access task2’s result

     

     SFJ ( task1 ); /* Block until

                                        task1 finishes */

     ... // Access task1’s result

 } 

}

Fig. 1. Simple Fork-Join synchronization pattern

Execution Unit Join/Wait for resultsFork Execution Finished

Some Class Task 2 Task 1

New

New

Return
Return

class SomeClass {

void someMethod (){

     ...

     fork ( task1 );

     fork ( task2 );

     ...

     MFJ (); /* Block until task1

                 and task2 finish */

     ...
     // Access either results

 }

}

Fig. 2. Multiple Fork-Join synchronization pattern

FJP is not circumscribed to multicore programming, but is also applica-
ble in execution environments where the notions of “tasks” and “processors”
exist. For instance, forked tasks can be run on a cluster. Recently, Computa-
tional Grids, which arrange resources from geographically dispersed sites, have
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emerged as another environment for parallel computing. Then, multicore CPUs,
clusters and Grids alike can execute FJP tasks, as they conceptually comprise
processing nodes (cores or individual machines) interconnected through com-
munication “links” (a system bus, a high-speed LAN or a WAN). This unifor-
mity arguably allows the same FJP application to be run in either environments
by using environment-specific execution platforms.

Broadly, current Java parallel libraries relying on task-oriented execution
models offer API primitives to fork one or many tasks simultaneously, which are
firstly mapped to library-level execution units. There are, however, operational
differences among libraries concerning the primitives to synchronize subcom-
putations. We have observed that there are two FJP synchronization patterns:
single-fork join (SFJ) and multi-fork join (MFJ). The former represents one-to-
one relationships between fork and join points: a programmer must block its
application to wait for each task result. With MFJ, the programmer waits for
the results of the tasks launched up to a synchronization call. In the following
codes, two SFJ calls are necessary to safely access the results of task1 and task2
(Fig. 1), whereas the same behavior is achieved with one MFJ call (Fig. 2).

Examples of Java parallel libraries and their support for these patterns are
Satin (MFJ), ProActive (SFJ, MFJ), GridGain (SFJ) and JPPF (SFJ), which de-
velopers take advantage of through API calls. As discussed, this requires to learn
an API, and ties the code to the library at hand. Even more important, managing
synchronism for real-world applications is error prone and time-consuming.

3 The EasyFJP project: FJP as a concern

Intuitively, FJP is suitable for parallelizing divide and conquer (D&C) applica-
tions. This is because there is a direct association between Fork and Join points
with recursive invocations and the use of recursive results respectively. For in-
stance, Binary Search D&C algorithm (Fig. 3) that serves as input of the par-
alellization process, has two recursive calls or Fork points (lines 5 and 6) and
two access to recursive results or Join points (line 8). The EasyFJP project [17]
goals is to design source code analysis algorithms and code generation tech-
niques to inject SFJ and MFJ into sequential D&C codes. EasyFJP includes
a semi-automatic process (Fig. 3) that automatically outputs library-dependent
parallel codes with hooks for attaching user optimizations.

First, at step 1, given a sequential application, a target D&C method of this
application and a target parallel library as input, EasyFJP performs an analy-
sis of the source code to spot the points that perform recursive calls and access
to recursive results. As a convention to facilitate the analysis it is important
that programmers write the sequential application assigning the results of recur-

13th Argentine Symposium on Software Engineering, ASSE 2012

41JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 20



D&C sequential
application

Step 2: Parallel
code generation

Step 1: Source
code analysis

1 public class BinSearch { 
2  boolean search(int elem,
             int[] array){ 
3   boolean s1, s2 = false;
4   . . .
5   boolean s1 = search(
     elem, halfOne(array));
6   boolean s2 = search(
     elem, halfTwo(array));
7   . . .
8   return s1 || s2;
9  }
10}

User policy: "Spawn 
search(int, int[]) if ... 
otherwise run it
sequentially"

FJP-based
tunable

application

Target library 
(GridGain, Satin, etc.)

Target method
(complete signature)

Step 3 (optional):
Policy injection

Source code
artifact

Configuration
artifact

. . .

task-result
dependencies
   = [{5,8}, {6,8}]

Fig. 3. EasyFJP: Parallelization process

sive calls to local variables. Depending on the target parallel library selected,
EasyFJP uses an MFJ or a SFJ-inspired algorithm to detect prospective fork
and join points, but the algorithms themselves do not depend on the parallel li-
brary selected. For brevity, below we discuss the SFJ algorithm; [17] presents
its MFJ counterpart. As such, the fork-join pattern supported by this algorithm
represents the main difference between this work and [17].

The SJF-based algorithm (see Alg. 1 and Table 2) works by depth-first walk-
ing the instructions and detecting where a local variable is defined or used. A
local variable is defined, and thus becomes a parallel variable, when the result
of a recursive method is assigned to it, whereas it is used when its value is read.
As input, the algorithm operates on a tree derived from the target method source
code. Nodes in this tree are method scopes, while ancestor-descendant relation-
ships represent nested scopes. First, the procedure IdentifyForkPoints search for
local variables placed on the left side of an assignment operation where the right
side is a recursive call. These variables would be parallel variables and the re-
cursive calls are Fork points. The list of Fork points is passed as argument to
the procedure IdentifyJoinPoints which, for every fork point, examines the sen-
tences looking for every use of the result of the parallel variable associated to a
Fork point. All the resulting ocurrences are marked as Join points of the current
Fork point. Finally, the algorithm passes on to step 2 the list of recursive call
and its corresponding uses of recursive results so that it can transform them into
API calls.

At step 2, based on previous identified recursive calls and uses of recursive
results, EasyFJP modifies the source code to call a library-specific fork and join
primitive between the definition and use of any parallel variable, for any possible
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Algorithm 1 The SFJ-based algorithm

procedure IDENTIFYFORKPOINTS(rootScope)
f orkPoints← empty
for all sentence ∈ TRAVERSEDEPTHFIRST(rootScope) do

varName← GETPARALLELVAR(sentence,rootScope)
if varName 6= empty then

ADDELEMENT(forkPoints,sentence)
end if

end for
return f orkPoints

end procedure
procedure IDENTIFYJOINPOINTS(rootScope, f orkPoints)

joinPoints← empty
for all sentence ∈ f orkPoints do

varName← GETPARALLELVAR(sentence)
currSentence← sentence
scope← true
repeat

useSentence← GETFIRSTUSE(varName,currSentence)
if useSentence 6= empty then

useScope← GETSCOPE(useSentence)
varScope← GETSCOPE(sentence)
if CHECKINCLUDED(useScope,varScope) then

ADDELEMENT(joinPoints,useSentence)
currSentence← useSentence

end if
else

scope← f alse
end if

until scope 6= true
end for
return joinPoints

end procedure

execution path. This step involves reusing the primitives of the target parallel
library plus inserting glue code to invoke (if defined) the user’s optimizations.
The former sub-step also adapts the parallel code to the application structure
prescribed by the library (e.g. subclassing certain API classes, generating extra
artifacts, etc.).

Targeting libraries supporting D&C (e.g. Satin) mostly requires source-to-
source translation, because sequential methods calls are individually and di-
rectly forked in the output code via fork library API functions. For libraries rely-
ing on master-worker or bag-of-tasks execution models (e.g. Doug Lea’s frame-
work, GridGain), in which hierarchical relationships between parallel tasks are
not present, EasyFJP “flats” the task structure of the sequential code. Fig. 4
shows part of the GridGain code generated by EasyFJP from the BinSearch ap-
plication shown in Fig. 3.
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Table 2. SFJ-based algorithm: Helper functions

Signature Functionality

getParallelVar
(aSentence,rootScope)

If aSentence assigns a recursive call to a parallel variable, the
variable name is returned, otherwise an empty result is returned.

getParallelVar(aSentence) Returns the name of the parallel variable defined in aSentence.

getFirstUse
(varName,aSentence)

Returns the first subsequent sentence of aSentence that uses
varName. If no such a sentence if found, an empty result is returned.

getScope(aSentence) Returns the scope to which aSentence belongs.

checkIncluded
(aScope,anotherScope)

Checks whether aScope is the same scope as anotherScope or is a
descendant of it.

GridGain materializes SFJ via Java futures. Lines 15-19 and line 21 repre-
sent fork and join points, respectively. Instances of BinSearchTask perform the
subcomputations by calling BinSearchGridGain.search(int, int[], ExecutionCon-
text) on individual pieces of the array. For simplicity, this code does not exploit
the latest GridGain API since it is fairly more verbose than previous versions.

Finally, at step 3, programmers can non-invasively improve the efficiency of
their parallel applications via policies, which are rules that throttle the amount
of parallelism. This is the only manual step and, even when not measured yet,
the effort to specify policies should be low as they capture common and sim-
ple optimizations. EasyFJP allows developers to specify policies based on the
nature of both their applications (e.g. using thresholds/memoization) and the ex-
ecution environment (e.g. avoiding many forks with large-valued parameters in
a high-latency network). Policies are associated to fork points through external
configuration and can be switched without altering parallelized codes. For in-
stance, BinSearch could be made forking search provided array.length is above
some threshold by implementing the shouldFork(ExecutionContext), otherwise
the sequential version of search would be executed. ExecutionContext allows
users to introspect execution at both the method level (e.g. accessing parameter
values) and the application level (e.g. obtaining the current depth of the task
tree). In other words, this object allows developers to access certain runtime in-
formation that refers to parallel aspects of the application under execution and
use the information to specify tuning decisions.

3.1 Developing with EasyFJP: Considerations

Determining whether a user application will effectively benefit from using Easy-
FJP depends on a number of issues that developers should have in mind. First,
feeding EasyFJP with a properly structured code does not necessarily ensures
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1 class BinSearchGridGain{
2 boolean searchSeq(int elem , int[] array){
3 // Same as BinSearch.search(int, int[])
4 }
5 boolean search(int elem , int[] array){
6 search(elem , array , initContext ());
7 }
8 boolean search(int elem , int[] array , ExecutionContext ctx){
9 if (!getPolicy(ctx.getMethod()). shouldFork(ctx))

10 return searchSeq(elem , array);
11 . . .
12 Grid grid = GridFactory.getGrid();
13 GridExecutorCallableTask exec = new GridExecutorCallableTask ();
14 int[] half1 = halfOne(array);
15 GridTaskFuture <boolean> s1future =
16 grid.execute(exec , new BinSearchTask(this, ctx, elem , half1));
17 int[] half2 = halfTwo(array);
18 GridTaskFuture <boolean> s2future =
19 grid.execute(exec , new BinSearchTask(this, ctx, elem , half2));
20 . . .
21 return s1future.get() || s2future.get();
22 }
23 }

Fig. 4. Example GridGain code automatically generated by EasyFJP

increased performance and applicability. The choice of parallelizing an applica-
tion (or an individual method) depends on whether the method itself can exploit
parallelism. In other words, the potential performance gains in parallelizing an
application is subject to its computational requirements, which is a design fac-
tor that must be first addressed by the developer. EasyFJP automates the pro-
cess of generating a parallel, tunable application “skeleton”, but does not aim
at automatically determining the portions of an application suitable for being
parallelized. Furthermore, the choice of targeting a specific parallel backend is
mostly subject to availability factors, i.e. whether an execution environment run-
ning the desired parallel library (e.g. GridGain) is available or not. For example,
a novice developer would likely target a parallel library he knows is installed on
a particular hardware, rather than the other way around.

Likewise, the policy support discussed so far is not designed to automate
application tuning, but to provide a customizable framework that captures com-
mon optimization patterns in FJP applications. Again, whether these patterns
benefit a particular parallelized application depends on several factors. For ex-
ample, not all FJP applications can exploit memoization techniques.

Moreover, an issue that may affect applicability is concerned with com-
patibility and interrelations with commonly-used techniques and libraries, such
as multithreading and AOP. In a broad sense, these techniques literally alter
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the ordinary semantics of a sequential application. Particularly, multithreading
makes deterministic sequential code non-deterministic, while AOP modifies the
normal control flow of applications through the implicit use of artifacts con-
taining aspect-specific behavior. Therefore, when using EasyFJP to parallelize
such applications, various compatibility problems may arise depending on the
backend selected for parallelization. Note that this is not an inherent limitation
of EasyFJP, but of the target backend. Thus, before parallelizing an application
with EasyFJP, a prior analysis should be carried out to determine whether the
target parallel runtime is compatible with the libraries the application relies on.

4 EasyFJP implementation

The implementation of EasyFJP (http://code.google.com/p/easyfjp-imp/)
is based on the notion of Builder. A Builder is a piece of code that concentrates
knowledge on the use of a parallel library and therefore is responsible for the en-
tire code generation process. The more the variety of Builders that are plugged
into EasyFJP, the more the parallelization choices the tool offers to users who
will use EasyFJP to write applications that take advantage of parallelism.

From a functional point of view, a Builder performs its work by relying on
three basic components: a code analyzer, a target parallel library and a code
generator. The code analyzer is the component in charge of identifying where
to insert calls to the target parallel library. The output of this code analysis
is the fork and join points. These points are required by the code generator,
the component which performs the transformation of the original code into
its parallelized counterpart by adding parallelization instructions into the tar-
get method. The parallelization instructions to support fork and join points are
highly coupled to a parallel library, since the last one is the component that
provides the parallelization support and acts during the actual execution of the
application. The abstract design of a Builder was thought as a set of combinable
and exchangeable components, to facilitate the extension of the tool. To goal
is to enable EasyFJP to cover a wide range of parallel environments through
the utilization of different parallel libraries that use different Fork-Join synchro-
nization patterns and provide different code customizations to optimize parallel
computations.

The parallelization process starts when the programmer indicates the Java
class of his/her application, which contains the D&C method to be parallelized.
Currently, this operation is done by writing a simple XML file. Then, the pro-
grammer needs to invoke a Java tool including a class called Parallelizer to start
the automatic source code transformation, which comprises:
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1. Peer Class Building: is the step in the parallelization process where fork and
join points are identified and then converted into middleware API calls. The
resulting artifact is the peer class.

2. Policy Injection: is the step where EasyFJP adds to the peer class the refer-
ences to the policies optionally provided by programmers with experience
in parallelization concepts.

3. Peer Class Binding: is the step through which the main application is bound
to the peer class (i.e. the one built on step 1) so that every call to the sequen-
tial D&C method is forwarded to its parallelized counterpart.

It is worth clarifying the existing relation between the previously mentioned
steps and Builder-related components. The code analyzer, which acts in the first
step, will be described in detail below. The code generator, instead, is present
each time the Java code is modified. Therefore, this component is needed not
only to translate fork and join points into middleware API calls but also when ex-
tra logic in the shape of policies is planned to be added to the parallelized code,
and finally, to establish the link between the sequential and the parallelized code
of the application. Then, the component is used throughout the three steps. The
classes that implement it will be described below. Lastly, the remaining compo-
nent -the parallel library- plays a protagonic role in the first and second steps.
However, despite being a component strongly related to the code analyzer and
the code generator, the implementation is not part of EasyFJP. In other words,
this is why EasyFJP rely on existing parallel libraries.

Fig. 5 shows the main classes of EasyFJP and the way they collaborate. The
Parallelizer class is the entry point to the tool. It uses three collaborator classes
to perform the steps described above. The Peer Class Building step is done by
a set of classes that respond to the Gamma’s Builder creational design pattern.
It is composed by the PeerClassDirector class and the PeerClassBuilder inter-
face. The former defines a generic algorithm to obtain the Peer Class as the final
product. The algorithm uses the PeerClassBuilder interface to perform the steps
it defines. These are mainly part of the Code Analyzer component, although
some code, the one related to inserts middleware API calls, belong to the Code
Generator component. Refining the previous algorithm by extending the Peer-
ClassDirector class as well as providing an extension to the PeerClassBuilder
interface, is the way to support SFJ and MFJ synchronization patterns. SFJPeer-
ClassDirector and SFJPeerClassBuilder are examples of such extensions. In ad-
dition, the code generator component is also present in the PolicyManager and
BindingManager classes. Both define generic procedures to achieve their pur-
poses, i.e. the Policy Injection and the Peer Class Binding steps, respectively.
These generic algorithms and procedures mentioned allows us to contemplate
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 bindPeerClass()

BindingManager

 parallelizeApplication()

Parallelizer

 getPeerClass()

PeerClassBuilder
«interface»

SFJPeerClassBuilder

«interface»

 parallelizeMethod()

SFJPeerClassDirector

generator.workflow.sfj

 buildPeerClass()

 parallelizeMethod()

PeerClassDirector

 addPolicyMechanism()

PolicyManager

generator.workflow

«Import»

«Import»

«Import»

«Import»

«Call»

Fig. 5. EasyFJP main classes of the workflow package

the peculiarities of the target parallel library (i.e. execution environment initial-
ization), and also the library used to manipulate the input Java code.

5 Experimental evaluation

The practical implications of using EasyFJP are determined by two main as-
pects, namely how competitive is implicitly supporting FJP synchronization pat-
terns in D&C codes compared to explicit parallelism and classical parallel pro-
gramming models, and whether policies are effective to tune parallelized appli-
cations or not. Hence, we conducted experiments in the context of the MFJ pat-
tern in [17]. Furthermore, next we report experiments with SFJ through our new
bindings to GridGain to further analyze the trade-offs behind using EasyFJP.

As a testbed, we used a three-cluster Grid emulated on a 15-machine LAN
through WANem 2.2 with common WAN conditions. We tested a ray tracing and
a gene sequence alignment application, whose parallel versions were obtained
from sequential D&C codes from the Satin project. Apart from the challenging
nature of the environment, the applications had high cyclomatic complexity, so
they were representative to stress our code analysis mechanisms.

We fed the applications with various 3D scenes and real gene sequence
databases from the National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov). For ray tracing, we used three task granularities:
fine, medium and coarse, i.e. about 17, 2 and 1 parallel tasks per node, respec-
tively. By “granularity” we refer to the amount of cooperative tasks in which
a larger computation is split for execution. More tasks means finer granulari-
ties. Furthermore, for sequence alignment, we also employed three granularities,
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each with a number of tasks that depended on the size of the input database for
efficiency purposes. For either application, we implemented two EasyFJP vari-
ants by using a threshold policy to regulate task granularity and another policy
additionally exploiting data locality, a feature of EasyFJP to place tasks process-
ing near parts of the input data in the same cluster. We developed hand-coded
GridGain variants through its parallel annotations and its support for Google’s
MapReduce [18]. Fig. 6 and Fig. 7 illustrate the average running time (40 execu-
tions) of the ray tracing and the sequence alignment applications, respectively.

For ray tracing, the execution times uniformly increased as granularity be-
came finer for all tests, which shows a good overall correlation of the differ-
ent variants. For fine and medium granularities, EasyFJP was able to outper-
form their competitors since SFJ in conjunction with either policies achieved
performance gains of up to 29%. For coarse granularities, however, the best
EasyFJP variants introduced overheads of 1-9% with respect to the most effi-
cient GridGain implementations. As expected, data locality turned out counter-
productive, because the performance benefits of placing a set of related tasks (in
this case those that process near regions of the input scene) in the same physi-
cal cluster scene becomes negligible for coarse-grained tasks. Again, the most
efficient granularities were fine and medium in the sense they delivered the best
data communication over processor usage ratio.

For sequence alignment, the running times were smaller as the granular-
ity increased. Interestingly, like for ray tracing, EasyFJP obtained better perfor-
mance for the fine granularity, and performed very competitively for the medium
granularity. However, the GridGain variants were slightly more efficient when
using coarse-grained tasks. In general, data locality did not help in reducing
execution time because, unlike ray tracing, parallel tasks had a higher degree
of independence. This does not imply that data locality policies are not effec-
tive but their usage should be decided depending on the nature of parallelized
applications, which enforces similar previous findings [17].

6 Conclusions

EasyFJP offers an alternative balance to the dimensions of applicability, code in-
trusiveness and expertise that concern parallel programming tools. Good appli-
cability is achieved by targeting Java, FJP and D&C, and leveraging primitives
of existing parallel libraries. Low code intrusiveness is ensured by using mech-
anisms to translate from sequential to parallel code while keeping tuning logic
away from this latter. This separation, alongside with the simplicity of FJP and
D&C, makes EasyFJP suitable for gradually mastering parallel programming.
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Fig. 6. Ray tracing: Average execution time

Our experimental results and the ones reported in [17] confirm that FJP-
based implicit parallelism and policy-oriented explicit tuning, glued together
via generative programming, are a viable approach to PaaC. We are however
performing more experiments with more SFJ-based and MFJ-based parallel li-
braries to better ensure results validity, which is at present our main treat to
validity. Moreover, EasyFJP has the potentiality to offer a better balance to the
“ease of use and versatility versus performance” trade-off inherent to parallel
programming tools for fine and medium-grained parallelism, plus the flexibil-
ity of generating code to exploit various parallel libraries. Up to now, EasyFJP
deals with two broad parallel concerns, namely task synchronization and appli-
cation tuning. We are adding other common parallel concerns such as inter-task
communication, and adapting our ideas to newer parallel environments such as
Clouds.

There is a recent trend that encourages researchers to create programming
tools that simplify parallel software development by reducing the analysis and
transformation burden when parallelizing sequential programs, which improves
programmer productivity [19]. We are therefore building an IDE support to sim-
plify the adoption and use of EasyFJP based on Eclipse. Finally, we have pro-
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Fig. 7. Sequence alignment: Average execution time

duced a prototype to support the development of parallel applications within
pure engineering communities, where scripting languages such as Python and
Groovy are the common choice [20]. At present, we have redesigned the EasyFJP
policy API and its associated runtime support to allows users to code policies in
Python and Groovy [20], but this requires further research.
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