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Abstract. Clock Difference Diagrams (CDDs), BDD-like data struc-
tures for model checking of timed automata, were presented as alterna-
tives for classic DBM representation. However, work on them seems to
have stopped, although there are still important open questions. CDD
definition required that repeated subtrees were aliased, but no clear algo-
rithm was presented for producing such compact representation, which
seems costly to achieve. In this article we describe our implementation
of such aliased subtrees and revisit CDDs by comparing their perfor-
mance against DBMs on current case studies, with and without repeated
subtrees. Our experiments show that CDDs still require more time and
memory than DBMs, suggesting that eliminating repetitions is still not
enough. Thus, this article re-opens issues that previous work on the topic
considered closed.

1 Introduction and Previous Work

In current days timed systems are both pervasive and critical, ranging from
embedded and PDAs to plant and flight controllers. Their complexity is ever
increasing so automated ways of verifying them make sense. Automated methods,
however, are known to suffer from scalability problems: their time and memory
requirements grow exponentially as systems increase in size. This is why any
technique that can palliate such problems is useful.

We focus on exploration of timed automata [1] –an extension of finite au-
tomata that models dense time– by on-the-fly forward reachability analysis [2].
Well-known tools in this area, such as Kronos [3] and UPPAAL [4], repre-
sent sets of clock valuations by means of Difference Bound Matrices (DBMs for
short) [5]. DBMs are (n+1)×(n+1) matrices, where n is the number of clocks in
the system, counting 0 as a special clock. Each cell represents the upper bound
on the difference between the corresponding clocks. This data structure provides
support for a graph reachability-like algorithm (depicted in Fig. 1) which saves
the encountered symbolic states in a set called Visited .

For both warranting termination and avoiding duplicated exploration, timed
automata reachability requires knowing if a newly discovered symbolic state is
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1: function ForwardReach(Property φ)
2: Visited ← ∅
3: Pending ← {(l0, z0)}
4: while Pending 6= ∅
5: (l, z)← next(Pending)
6: if (l, z) |= φ return YES
7: end if

8: Add((l0, z0),Visited)
9: for (l′, z′) ∈ suc⊲(l, z)
10: Zl′ ←

⋃
(l′,z′)∈(Visited∪Pending) z

′

11: if z′ * Zl′

12: Add((l′, z′),Pending)
13: Add((l′, z′),Visited)
14: end if

15: end for

16: end while

17: return NO
18: end function

Fig. 1. Forward reachability algorithm.

already covered by the existing ones. This is inefficient when working with DBMs,
because they can only represent convex clock valuations. The traditional solution
is to employ sets of DBMs, but it is usually very hard to detect superpositions
there, leading to repetitions of calculations and other drawbacks.

There have been many attempts to overcome this problem by using BDD-like
data structures [6], which are often used in untimed systems. See, for example,
Asarin et al. [7] and Strehl et al. [8] among others. Also worth noting is the work
by Seshia and Bryant [9], which attempts to solve the problem solely with BDDs.
However, the exemplars used in this work are too small to be conclusive. The
one with the most potential, however, was introduced by Behrmann et al. in [10],
where they presented Clock Difference Diagrams (CDDs for short). Their work
used DBMs for most of the operations and CDDs for the Visited set, obtaining
memory savings at the cost of extra time.

We have several reasons to revisit CDDs. First, besides their use as a repre-
sentation for the Visited set, a complete reachability algorithm that did not rely
on DBMs was yet to be provided. Also, being a tree-like data structure, they
could have repeated subtrees. CDDs require that repeated subtrees are replaced
by maximal aliasing (referred to as “maximal sharing” in the original article).
Detecting repeated subtrees can be expensive, so we believe the topic requires
further analysis (we elaborate on this on Section 4). Finally, original case studies
used systems with a maximum of 5 clocks. The verification algorithm’s complex-
ity, being O(n!2nCn), where n is number of clocks and C is the largest constant
appearing in the inequalities [11], is dominated by the number of clocks.

In this work, we evaluate memory and time performance of three implemen-
tations for representing non-convex state sets: sets of DBMs (which is the stan-
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dard representation), (non-convex) CDDs without aliasing (i.e., with repeated
subtrees) and (non-convex) CDDs with aliasing (i.e., without repeated subtrees).

Through some well known case studies we show that although CDDs do
reduce the number of states found, operating on them imposes an important
overhead in terms of both memory and time. The culprit is to be found in the
size of non-convex CDDs, and the complexity of operating on their unbounded
branching structure, which distinctively separates CDDs from BDDs.

Interestingly, using aliasing to suppress repeated subtrees is not enough. Al-
though our strategy to detect repeated substructures is lightweight, and effec-
tively reduces the memory footprint, time and memory measurements are still
considerably above the traditional strategy of using sets of non-convexes. Sec-
tion 4 deepens on the subject, after presenting the necessary background on
timed automata in Section 2 and CDDs in Section 3.

Relevant experimentation is presented and analyzed in Sections 5 and 6, and
Section 7 rounds up the article with our conclusions and future road map.

For completeness, CRDs, short for Clock Restriction Diagrams, should also be
mentioned. They were introduced by Wang in [12] and are similar to CDDs, but
represent explicitly only one bound. Although in this work we focus on CDDs,
Section 5 does perform a comparison against CRDs.

2 Background

Timed automata [1] are a widely used formalism to model and analyze timed
systems. They are supported by several tools such as Kronos [3], Zeus [13] or
UPPAAL [4]. Their semantics are based on labeled state-transition systems and
time-divergent runs over them. Here we present their basic notions and refer the
reader to [1, 3] for a complete formal presentation.

Definition 1 (Timed automaton). A timed automaton (TA) is a tuple A =
〈L,X,Σ,E, I, l0〉, where L is a finite set of locations, X is a finite set of clocks
(non-negative real variables), Σ is a set of labels, E is a finite set of edges,

I : L
tot
→ ΨX is a total function associating to each location a clock constraint

called the location’s invariant, and l0 ∈ L is the initial location. Each edge in
E is a tuple 〈l, a, ψ, α, l′〉, where l ∈ L is the source location, l

′ ∈ L is the
target location, a ∈ Σ is the label, ψ ∈ ΨX is the guard, α ⊆ X is the set of
clocks reset at the edge. The set of clock constraints ΨX for a set of clocks X
is defined according to the following grammar: ΨX ∋ ψ ::= x ∼ c|ψ ∧ ψ, where
x ∈ X,∼∈ {<,≤,=, >,≥} (although invariants restrict ∼ to {<,≤}) and c ∈ IN.

Usually, a TA A has an associated mapping Pr : L 7→ 2Props which assigns to
each location a subset of propositional variables from the set Props.

The parallel composition A ‖ B of TAs A and B is defined using a label-
synchronized product of automata [1, 3]. At any time, the state of the system
is determined by the location and the values of clocks, which must satisfy the
location invariant. The system can evolve in two different ways: either an enabled
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transition is taken, changing the location and (maybe) resetting some clocks
while the others keep their values unaltered (a discrete step), or it may let some
amount of time pass (a timed step). In the latter case, the system remains in the
same location and all clocks increase according to the elapsed time, while still
satisfying the location invariant.

It is important to note that, in the timed framework, the existence of real-
valued clocks generates an infinite state space (locations plus clocks valuations).
Fortunately, this does not imply undecidability of many interesting problems
such as state reachability.

Definition 2 (Clock valuations). A valuation is a total function from the
clock set X into IR+ (i.e., the reading of each clock in a particular moment).

The valuation set over X, VX is defined as {v : X
tot
→ IR+}. For each v ∈ VX and

δ ∈ IR+, v+ δ stands for the valuation defined as (∀x ∈ X)(v+ δ)(x) = v(x)+ δ.

To deal with infinite state manipulation, convex sets of clock valuations
are symbolically represented as conjunctions of inequalities (e.g., 1 ≤ x ≤ 5 ∧
x− y > 8). Each of these conjunctions represents a convex (and infinite) set of
points, and is referred to as a zone. A data structure called Difference Bound
Matrix (DBM) [5] is typically used to manipulate such kind of information.
Non-convex sets are represented as unions of convex sets.

Not every constraint needs to be present for all the operations. Actually,
a reduced version of the constraint systems can be used for most operations,
thus saving memory [14]. In practice, most tools use a variation of DBMs, called
Minimal Constraint Representation, which employs that idea. As these DBMs are
sparse, they are not stored like proper matrices, but as a linked list of constraints,
in order to save space. When we mention DBMs, we are always referring to this
compact version.

Symbolic states are represented by a pair (l, z) where l is a location and z
a timed zone. Given a state1, the timed successor set is computed by the suc⊲
operator, defined as suc⊲(l, z) = {(l′, z′)/ 〈l, a, ψ, α, l′〉 ∈ E∧z′ = sucτ (resetα(z∩
ψ)) ∩ I(l′)}, where resetα means putting the clocks in α to zero and sucτ (ψ)
means replacing the constraints of the form x ≺ c by x < ∞ while leaving the
rest intact. The details can be consulted in [15, Chapt. 2] or [16].

The basic (conceptual) procedure for checking reachability of property φ
requires a queue of symbolic states to be explored, commonly known as Pending ,
and a set of already visited states, known as Visited . The algorithm works like
this: insert the initial state in the Pending queue and initialize an empty Visited
set. Then, while Pending is not empty, take a state from it and check whether
the property φ holds for it. If it does, finish with a“YES”result, otherwise, put it
in Visited , and compute its (timed) successors (one for each outgoing transition
from the location). The total number of states is finite [11], but there can be
repetitions. To ensure termination, before putting them in Pending , it should be
checked that they are not included in any other state from Visited .

1 From now on states are implicitly symbolic.
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3 Clock Difference Diagrams (CDDs)

In this section, we describe our implementation of Clock Difference Diagrams as
presented in [10].

3.1 Data Structure Definition

Definition 3 (CDD). Given a set X of clock variables, X ′ = X ∪{0}, a CDD
is defined by a tuple k = [diff (k), Ints(k), S(k)], where:

1. diff (k) ∈ (X × X ′) ∪ {TRUE ,FALSE} is the clock difference represented
by this node. These clock differences are extended with values TRUE and
FALSE. Nodes that hold any of these latter values are called terminal nodes.

2. Ints(k) is a list of outgoing edges. Each edge is labeled with an integral (open
or closed) interval. Ints(k)n denotes the nth list’s interval, and |Ints(k)|
denotes the interval list’s size.

3. S(k) is a list of successor nodes. S(k)n and |S(k)| are defined in a similar
way as previously. For each 1 ≤ n ≤ |S(k)|, S(k)n yields the node reached
by traversing the edge Ints(k)n.

A CDD k such that diff (k) is TRUE (or FALSE ) will usually be referred as
just TRUE (or FALSE ) for short. Similarly, given an interval I we will write
S(k, I) to denote the node (hence, the CDD) obtained by traversing the edge
labeled I from k. Formally, S(k, I) = k′ ⇔ ∃i, 1 ≤ i ≤ |Ints(k)| such that
Ints(k)i = I ∧ S(k)i = k′.

Since CDDs are hierarchical in nature, an order on clock differences is needed,
which can be defined as an extension of an order on clock variables.

Definition 4 (Structure invariant). The following constraints are imposed
on every node k of a CDD:

– Whenever diff (k) is TRUE or FALSE, the lists Ints(k) and S(k) must be
empty.

– In the other case, no element of S(k) may be FALSE.
– Given a total order on clock differences <, it must hold that for any k′ in
S(k), either diff (k) < diff (k′) or k′ is TRUE.

– Since edges are labeled by intervals, the existence of both differences xi − xj
and xj − xi for any pair of clocks xi, xj is redundant. Therefore, if diff (k)
is of the form xj − xi it must hold that xi < xj.

– Every pair of intervals in diff (k) must be disjoint. Moreover, diff (k) must
be sorted; we say that for any two intervals I and J , I < J ⇔ ∀i, j such
that i ∈ I and j ∈ J , it holds that i < j.

– For any two nodes k1 and k2 of a CDD (potentially the same node), and for
any intervals i1 ∈ Ints(k1), i2 ∈ Ints(k2), if it is the case that S(k1, i1) is
structurally equal to S(k2, i2), then it must be that S(k1, i1) and S(k2, i2) are
exactly the same structure instance. That is, we require complete structure
aliasing between identical substructures.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 64



The previous definitions provide the cornerstone for timed automata veri-
fication using these hierarchical structures. The following definitions elaborate
on the structure’s semantics. For this purpose, a mapping between temporal
constraints in ΨX and CDDs needs to be defined.

Definition 5 (Mapping of temporal constraints to CDDs, r ❀ CDD).
∀ψ1, ψ2 ∈ ΨX , x, y ∈ X,x < y, c ∈ IN, we define the mapping r ❀ CDD as
follows:

r❀CDD(True) = [TRUE , λ, λ] (1)

r❀CDD(False) = [FALSE , λ, λ] (2)

r❀CDD(c < x) = [x− 0,≪ (c,∞) ≫,≪ r❀CDD(True) ≫] (3)

r❀CDD(x < c) = [x− 0,≪ [ 0, c) ≫,≪ r❀CDD(True) ≫] (4)

r❀CDD(x− y < c) = [x− y,≪ (−∞, c) ≫,≪ r❀CDD(True) ≫] (5)

r❀CDD(ψ1 ∧ ψ2) = Intersection(r❀CDD(ψ1), r❀CDD(ψ2)) (6)

Mapping definitions 3, 4 and 5 have also a corresponding one for ≤ with the
interval closed to the right.

Theorem 1. The mapping r❀CDD previously defined is correct with respect
to satisfiability, that is, ∀ψ ∈ ΨX , v ∈ VX , v |= ψ ⇔ v |= r❀CDD(ψ). [17]

3.2 Algorithms

As an integral part of this work, we developed the necessary algorithms to per-
form full forward reachability based model-checking over CDD structures. The
interested reader is referenced to [18] for further discussion of these topics.

In Fig. 2 we present the union algorithm. Remember from Fig. 1 that when
a new zone z′ is found to be new it should be added to the Visited set by means
of Add((l′, z′),Visited). When Visitedl

2 is represented as a non-convex CDD, the
previous Add() is, conceptually, Visitedl = Union(Visitedl, z

′). For clarity and
ease of reading we present a recursive version of the algorithm, although the
actual implementation is iterative, stack-based, modifies its parameters instead
of returning a new CDD, and is tailored to consider that the second parameter
does not contain branching.

4 Compressing Repeated Subtrees

Although the main motivation for CDDs was to obtain an appropriate data
structure for non-convex sets, some issues require special attention. We find the
requirement for maximum sharing problematic.

Indeed, the original approach to maximum sharing described in [10] was to
keep a CDD-node cache as a hash table and try to find an existing node there
when a new one was required. The operation was reported as taking constant

2 Visitedl is the part of Visited that corresponds to location l.
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1: function Union (rA, rB : CDD)→ r′ : CDD
2: if rA = FALSE return CDDB

3: else if rA = TRUE return TRUE

4: else if diff (rA) < diff (rB)
5: for all I ∈ Ints(rA)
6: Add(r′, I,Union(S(rA, I), rB))
7: end for

8: else if diff (rA) > diff (rB)
9: . . . follows as previous case.
10: else

11: for all I ∈ Ints(rA), J ∈ Ints(rB)
12: if ¬Empty(I ∩ J)
13: Add(r′, I ∩ J,Union(S(rA, I), S(rB , J)))
14: end if

15: end for

16: end if

17: return r′

18: end function

Fig. 2. CDD union recursive algorithm.

time. However, for a node to be a suitable replacement of another, their succes-
sors have to match. Unlike BDDs, which have fixed binary branching, each CDD
node can be branched in any number of (non-overlapping) intervals. The depth
is indeed bounded by the square of the number of clocks, as each node involves
two of them3. It can clearly be seen that it doesn’t seem likely to implement the
cache in constant time, so we take the term constant as meaning negligible, and
attribute that to the small sizes of the case studies originally used.

Case studies have grown since the CDD article by Behrmann et al. Current
literature examples have at least an order of magnitude more states, and many
times the number of clocks (keep in mind that timed automata reachability is
exponential in the number of clocks).

To understand the impact, either as a gain or a loss, of compressing CDDs
by the use of aliasing, we faced a number of options.

Whatever aliases handling strategy is chosen, it must be implemented in the
Union() operation, which takes a zone found to be new and adds it to Visited
set, as seen in Fig. 2. Remember from Section 2 that the explorations finds
states (l, z), where z is a zone, that is, a convex CDD. Convex CDDs do not
contain branching. Then, (l, z) must be checked for inclusion in Visitedl, which
contains a non-convex CDD (i.e., a branching CDD). If it is indeed new, then
Union(Visitedl, z) must be performed. This is the only operation that has to
modify branched CDDs.

3 Note that this strategy differs from the reduce operation in OBDDs [19]. Reduce is
called once at the end of operations to recover the structure invariant that states
the nonexistence of repeated subgraphs. It works bottom up in linear time to merge
isomorphic substructures. Again, the time is linear because the branching is bounded.
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4.1 Handling Aliasing in the Union operation

The repetition detection could be done either on-the-fly or off-line. Doing it
on-the-fly is hard, because a generated subtree might be modified later on, as
the operation returns from the recursion4, so aliases detected might need to be
broken and whole subtrees copied.

The offline approach, which is easier to implement, mimics what is done in
BDDs: complete the operation, then make a second pass detecting aliasing and
thus compressing the CDD.

We started by the second one, and the results obtained showed no point
in also trying the first approach: both approaches will obtain the same level of
compaction and, as will be seen in Section 5, memory overhead is still of a couple
of orders of magnitude compared to the standard version.

To achieve compression we attached a hash value to each CDD node, com-
puted as a hashing function over its fields combined with the hash values of
its descendants. A 64-bit multiplicative hash function was used. A refcount and
a boolean already compressed field were also needed. As aliasing was only go-
ing to be detected at the end of the Union() operation, changes to implement
compression were somehow localized:

– The Union() function maintains a CDD hash table.
– The compression is an in-order traversal looking each hash code in the table

and replacing the appropriate branch by another reference to the existing
one found in the table.

– CDD destruction needs to consider aliasing, via the refcount field.
– Aliasing is immaterial to the rest of the operations: the inclusion checking

can handle it transparently, and the others only operate on zones, which
are not aliased because they contain no branching. Conversely, non-convex
CDDs are only modified by Union() and the destructor.

The next section shows the experimentation performed. As can be seen, in
only little cases was the use of CDDs faster than DBMs. Also, the memory usage
increases up to many orders of magnitude. In Section 6 we discuss possible threats
to the validity of the method employed.

5 Experimentation

To test the data structures, we incorporated CDDs into the model checker
Zeus5 [13] and ran a series of experiments against well known case studies from
the literature.

1. RCS4 and RCS5 , the Railroad Crossing System inspired by [20] with 4 and
5 trains. The models have 8 and 9 automata, with one clock each.

4 Our implementation is actually iterative, but the principle is the same.
5 Although Zeus is a distributed tool, a monoprocessor version was used for this
article.
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2. Pipe6 , end-to-end signal propagation in a pipe-line of sporadic processes
that forward a signal emitted by a quasi periodic source, with 6 stages. 14
components, one clock each.

3. FDDI4 and FDDI8 , an extension of the FDDI token ring protocol where
the observer monitors the time the token takes to return to a given station.
The models use 9 automata with 14 clocks and 17 automata with 26 clocks,
respectively.

4. Conveyor6AB , Conveyor Belt [13] (with 6 stages and 2 objects). 11 compo-
nents totalizing 10 clocks.

5. Struct , Active Structural Control System that limits structural vibration due
to earthquakes or strong winds ([21]). 7 automata, one clock each.

Some case studies were also treated by ObsSlice [22], a safe model reducer,
and are primed on the tables. Runs are tagged with true or false depending on
whether the error state was reachable or not. All the experiments were run on an
Intel Xeon 1.6 GHz machine with 4 GB of RAM, running FreeBSD 7.0 Unix in
64-bit mode. Besides the main runs, some extra ones were done to substantiate
the claims in Section 6, which we omit for space reasons.

Example DBM CDD Difference
States found (Ratio)

FDDI8 true 9272 9272 0%
FDDI8 false 9272 9272 0%
FDDI9 true 27186 27186 0%
FDDI9 false 27186 27186 0%
RCS4 true 3337 2963 -11.2 %
RCS4 false 8274 OOM
RCS5 true 90560 OOM
RCS5 false 281547 OOM
Pipe6 ’ true 52668 OOM
Pipe6 ’ false 24581 OOM
Pipe6 true 727694 OOM
Pipe6 false 80280 OOM
Struct’ true 677 638 -5.7%
Struct’ false 6205 5495 -11.4%
Conveyor6AB true 2431 2431 0%
Conveyor6AB false 15481 OOM

Table 1. States found with and without CDDs.

Table 1 reports the saving on the number of states found when using CDDs.
These savings are explained by zones that would be re-explored when Visited
is a set of zones, because although their state space is already explored, it is
fragmentally covered by many other zones and thus not detected. Unfortunately,
reduction in number of states does not have a correlation in neither time nor
memory.
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Example DBM CDD CDD+A DBM CDD CDD+A
time (elapsed secs) mem. (KB)

FDDI8 true 520.23 114.11 121.03 24180 107432 81248
-78.0% -76.7% +344% +235%

FDDI8 false 520.13 113.81 120.83 24240 107464 82084
-78.1% -76.7% +343% + 2.38%

FDDI9 true 2516.22 632.31 680.72 110328 1245684 780380
-74.8% -72.9% +1029% +607%

FDDI9 false 2515.50 634.45 682.86 110388 1245716 783652
-74.7% -72.8% +1028% +610%

RCS4 true 1.93 2378.00 647.97 2204 1572572 221084
+123112% +33573% +71250% +9931%

RCS4 false 7.63 6513.07+ 6183.44+ 3376 OOM OOM
∞ ∞

RCS5 true 47.29 22931.11 14430.81 8428 OOM OOM
∞ ∞

RCS5 false 1597.10 22979.94 14220.28 41336 OOM OOM
∞ ∞

Conveyor6AB true 2.04 102.93 85.23 3808 398724 123128
+5044% +4077% +10370% +3233%

Conveyor6AB false 15.56 2189.43 5553.37 11068 OOM OOM
∞ ∞

Pipe6 ’ true 118.69 4101.81 6525.58 21400 OOM OOM
∞ ∞

Pipe6 ’ false 52.99 3522.60 8397.18 17728 OOM OOM
∞ ∞

Pipe6 true 3737.10 2780.36 4663.14 191260 OOM OOM
∞ ∞

Pipe6 false 228.64 2978.07 5646.33 48136 OOM OOM
∞ ∞

Struct’ true 15.56 5.90 5.19 10884 31216 10880
-62.0% 66.5% 186.8% -0.0%

Struct’ false 3.46 4435.72+ 15618.64 2564 OOM 3557300
∞ +45130% ∞ +138740%

Table 2. Results obtained with all implementations.
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Table 2 shows time and memory results for the three implementations con-
sidered. DBM is the standard version that uses sets of zones for the Visited
set and expresses DBMs as a packed bit structure of the minimum constraint
systems ([15, Chapt. 5]). The version that uses (non-convex) CDDs is labeled
CDD, and CDD+A when aliases detection and compression was used. When
the experiment ran out of memory (OOM) time was measured up to memory
exhaustion. All percentages are relative to the DBM version.

As can be seen in the tables, most of the cases run out of memory with
CDDs, and few of them are saved when compressing by aliasing. Compression,
however, does a good job, diminishing significantly both memory and time, but
the results are still orders of magnitude higher than using sets of zones.

It is clear from the results that the classical use of sets of zones as a repository
outperforms the CDD implementations when it comes to memory use, even when
performing full aliasing detection. This at first may seem unintuitive, since the
idea behind tree-like structures is the sharing of common substructure and also
leveraging on branch prefix sharing. However, some factors influence the CDD
repository structure into growing bigger than expected. In the first place, the set
based implementation relies strongly on the reduced representation of zones, that
is, not all clock differences need to be explicitly represented in order to accurately
render a given zone. In the case of tree-like structures, although each added zone
is indeed represented in a reduced way, the final product may not preserve this
reduction, as many different zones may have various clock differences explicitly
represented. However, once they are joined, the structure is prone to converge
to represent all clock differences.

Another factor that influences structure growth is interval atomization, that
is, the phenomenon of constantly breaking up intervals into smaller components.
This results from the addition of zones that overlap in a non-constant way over
the already existing repository. For instance, refer to Fig. 3, where the spike-
shaped area depicts the projection over clocks x and y of the temporal state
space at a given point during the verification, while the rectangular area rep-
resents the projection of a new zone to be added to the repository. In a CDD
representation, the original spike-shaped repository would span three different
intervals for the (y − y0) clock difference. However, when adding the rectangle-
shaped zone, these three intervals are further divided into seven. Whereas in the
classic set-based implementation the zone addition is achieved just by adding
the zone representation to the set, in the tree-like representation the zone may
be copied seven times (one for each interval), up to a depth dependent on the
actual size of the clock set. Although at first these copies would surely be aliased,
further additions may dislodge these aliases from one another, effectively increas-
ing structure size. It is worth mentioning that the depth to which the zones are
replicated is sensitive to clock order in the CDD. We speculate atomization-
generating clock differences should be pushed further down in the hierarchy as
a possible deterrent to structure size explosion.

Indeed, it is well known in BDDs that the ordering of variables can have
a important impact in the size of the structure. The same can happen with
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Fig. 3. An addition of a zone to a state space repository generating multiple intervals
(projection over two clocks).

CDDs. However, finding a good ordering on clocks is a topic on its own, as in
BDDs. We only experimented with a fixed ordering, probably suboptimal. We
also performed test runs based on random ordering of the specification clocks.
In these preliminary experiments, clock ordering did show a dramatic effect
on structure size (drastically reducing or increasing it), although still not being
competitive enough compared to the DBM results. There is still much research to
perform to be able to tell how a particular clock ordering influences the structure,
or whether this effect can be predicted by analyzing the raw system model.
The clock ordering issue for CDDs was already mentioned in [23], although the
article draws conclusions on the behaviour of CDDs based on a tool that uses
CRDs, which encode only one bound. We leave to future work researching the
importance of different clock orderings and finding out if there is some generic
way of determining an optimal (or quasi-optimal) ordering.

The results we obtained contradict [10] and previous work on CRDs [12].
We were not able to test directly against UPPAAL, as current versions do not
include CDDs as a choice of data structure. RED, the tool based on CRDs, does
not perform well on our case studies. For example, on RCS4 true, it takes 5
seconds and 10 MB of memory (more than our DBM implementation but less
than CDDs), but also reports a (spurious) counterexample for the unreachable
version. The other case studies behaved similarly. Such discrepancies could not
be solved while corresponding with the author, within the timeframe available
for this article.

6 Threats to Validity

The technique presented is not claimed to be definitive and is under ongoing
research. Nevertheless it is important to understand that deciding aliasing based
only on hash values can lead to regarding different subtrees as the same. In
turn, as non-convex CDDs are used to check if a newly found zone is indeed yet
unexplored, it can be the case that it is explored again without need, because a
branch was incorrectly chopped off from the CDD. On a pathological bad case
this could jeopardize termination. Being aware of the potential problem, we still
consider our results valid because:
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– In terms of time used, the technique provides a lower bound, compared to
what should be used in a “production” setting, which will require comparing
complete subtrees or any other more involved method.

– Calculating hashes and storing them incurs by itself in an overhead, which
we measured to be around 40% in time and around 10% in memory. That
means that resorting to the full comparison method would consume at most
10% less memory, because there might be no need to store the hashes.

– However, if hashes are not used, and get replaced by an in-depth comparison
of subtrees, time requirements scale dramatically: all our case studies would
run out of time.

– If the model checker does terminate, the number of explored states could be
higher than the version without compression, but equally correct.

– Although the model checker ran out of memory in some cases, it did so by the
very size of the case study. The states-found counter showed normal values
in all cases.

– When it did terminate, the number of states found, and when appropriate,
the trace, coincided with the version without compression.

– There is an easy way around to get exact results: use hashes to determine
if two subtrees are possible matches, and if the hashes coincide, only then
perform an in-depth comparison. Note that this approach does not save
memory, and the runtime overhead can be between 7% and 20% on the
cases where we tried it.

– Nevertheless, we still did all of our experimentation only using hashes, be-
cause resorting to in-depth comparisons would only increase time and pos-
sibly memory counters, not changing the overall results.

– The data structure used to represent branching CDDs does have provisions
to sacrifice a little extra space in order to save time (while adding an extra
branching, for instance). As these options are tunable, we turned them off to
rule out that the memory overhead of CDDs was not due to them. Results
showed that the memory footprint diminished between 10 and 40% with a
proportional increase in time. The extra memory requirements for CDDs
being many orders of magnitude higher, the potential saving does not make
the difference.

– Finally, the sheer difference in our obtained results versus previous work may
suggest a bug in our programming. In order to minimize this issue we have
performed extensive testing on our tool, and also monitored memory usage
through the valgrind [24] tool, and detected no bugs that would result in
spurious memory usage.

Clock ordering deserves separate mention, as an appropriate one could have
high impact in the results. Our preliminary results are non yet conclusive in this
regards, as mentioned in page 5. We leave this area pending to future research.

7 Conclusions and Future Work

In this article we revisited Clock Difference Diagrams, a data structure represent-
ing non-convex sets of clock valuations for model checking of timed automata.
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The original presentation left some questions open, namely experimentation with
bigger case studies, and clarification of the repeated subtree detection algorithm.

To approach these questions, we evaluated memory and time performance
of three implementations for representing non-convex state sets: sets of DBMs
(which is the standard implementation), (non-convex) CDDs without and with-
out aliasing (i.e., with and without repeated subtrees).

Regarding CDDs, as shown in Section 5, if repeated subtrees are not pruned
using aliasing, time and memory requirements can grow by many orders of mag-
nitude, even though the number of states diminishes as expected in some cases.

Our experiments confirm that although aliasing can decrease memory con-
sumption significantly, it is not enough to make the CDD version competitive.
Even with aliasing, CDDs need orders of magnitude more memory. The original
article that introduced CDDs showed memory savings at the price of augmented
times. Their case studies, although representative at the time, are orders of mag-
nitude smaller than the ones that tools handle nowadays. We attribute to the
number of clocks used and the hundreds of thousands of states dealt with today
the difference in outcome, as both factors contribute to more branching in CDDs.
A favorable ordering of clocks could also be responsible for the difference.

Said article did not provide details on how aliasing was handled. We found
that detecting it is costlier and less useful than expected. Our experiments still
place the non-convex, aliased CDD implementation as taking much more time
than the standard one based on sets of convexes.

Of course we cannot prove that there is not a better implementation that
correctly handles aliasing and is faster than the standard one. But after getting
involved with the details of the algorithms we haven’t found convincing, detailed
evidence that it does exist. Even if it did exist, our current implementation does
achieve maximum compression, and on current days case studies, the memory
overhead is just too high. It is worth emphasizing that our implementation is
based on the same packet bit structure described in [15, Chapt. 5], which is very
efficient in space.

As already mentioned, clock ordering also deserves analysis. It is well known
that BDD sizes are highly sensitive to the order of variables. The same can be
expected from CDDs. The topic of how to order clocks to diminish branching
in CDDs is, in our opinion, the path that could turn CDDs useful in the future,
if at all. For that to happen, orderings that diminish branching by orders of
magnitude need to be found, to make up for the orders of magnitude more
memory that branching seems to consume.
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