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Abstract. Quantitative evidence is presented in order to study the per-
formance of a wavelet-based, second order estimator of relevance to mul-
tiscaling phenomena such as telecommunications traffic. Special atten-
tion is given to the behavior of the confidence intervals of the scaling
exponent under Gaussian assumptions with synthetic long-range depen-
dent trajectories, allowing for a straightforward contrast with the theo-
retical results presented in the bibliography. The bias-variance tradeoff
decision behind the choice of the onset of the scaling region is also re-
visited, along with its influence on the confidence of the intervals of the
exponent.

Keywords: Wavelet Decomposition, Long Range Dependence, Scale In-
variance, Multiscale Estimation, Fractional Gaussian Noise, Telecommu-
nications Traffic.

1 Introduction

Stochastic processes with scale invariant features are central to the study of a vast
collection of natural and human constructions including hydrology, turbulence,
biology, telecommunications traffic and computers. In essence, the concept of
scale invariance refers to the absence of a particular, privileged, or reference
scale: thus, the paradigm is built around the relations among scales, perhaps
within a given range or interval in which the scaling behavior manifests itself.

One of the recurring difficulties in the analysis of scale invariant series is re-
lated to the poor performance of the traditional estimation techniques, which are
often constructed under stationary and/or short memory hypotheses. Wavelet-
based estimation, on the other hand, can often eliminate or mitigate some of
these shortcomings, enabling for computationally efficient implementations. It is
therefore of particular interest to have appropriate tools for the study of these
phenomena.

This article complements earlier work from the authors, where a self-contained
implementation of the wavelet estimator was built for studying the statistical
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behavior of the estimator: the performance of the scaling onset detection algo-
rithm and the effectiveness of confidence intervals involved in measurements of
the scaling exponent. Both of them are discussed below.

The outline of this article is as follows: section 3 provides a brief introduction
to two of the most commonly used scale invariant processes, fractional Brownian
motion and its increment process, the fractional Gaussian noise. Special attention
is given to the properties emerging from the wavelet analysis of these, in order
to grasp some of the theory behind the estimation tool. In section 4 we present
evidence related to the statistical performance of the estimator, then conclude
in section 5.

2 Scope and Objectives

The goal of this work is to provide quantitative evidence related to certain
aspects of the behavior of the wavelet-based estimator described in [3]. More
specifically, we target the study of the performance of the confidence levels of α̂,
the scaling exponent estimator with a fully-automated configuration using the
transition detection algorithm originally presented in [7].

Additionally, we have restricted the scope of our analysis to the (ideal) case
of long memory processes such as fractional Gaussian noise. This has been done
on purpose in order to be able to contrast our results with the vast amount of
predictions given in the literature.

3 Background

In this section we start with a brief introduction to the main concepts supporting
the estimation of long range dependent processes using wavelets. For convenience
we have adopted, wherever possible, the naming convention commonly used in
the bibliography [3] [7].

3.1 LRD Trajectories

A process X = {X(t), t ∈ R}, wide-sense stationary, presents long-range depen-
dencies or LRD if its correlation takes the following form:

cXX(t+ τ, t) ∼ cr|τ |−β , τ → ∞ (1)

where cr is a constant and 0 < β < 1. Equivalently, the power spectral density
satisfies:

ΓX(f) ∼ cf |f |−γ , f → 0 (2)

with 0 < γ = 1 − β < 1 and cf = 2(2π) sin((1 − γ)π/2)Γ (γ)cr, where Γ is the
usual Gamma function.

The behavior described by the formula (1) determines a very slow decay
rate of the autocorrelation function, which is quantified by the exponent β.
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Indeed, this decay is so slow that the correlation function is not summable:
LRD processes thus have long memory, because samples relatively distant from
each other have stronger statistical influences. In practice, the presence of the
long memory effect is often detrimental to the performance of the analytical
tools, for example worsening the convergence of algorithms that employ empirical
estimators of higher order moments [10].

As we can see from expressions (1) and (2), the LRD effect is by definition an
asymptotic behavior, so it does not provide a clear cutoff frequency after which
the dependencies become apparent. As discussed below, this feature (actually the
lack of such) has a direct impact in the design of the algorithm for automatic
detection of the scaling region.

3.2 On the fBm and fGn processes

Let us now briefly present some features of the family of Gaussian process we
use throughout this work: the (normalized) fractional Brownian motion which
we refer to as fBm, and its increment process called fractional Gaussian noise,
commonly abbreviated as fGn.

About fBm processes. It is perhaps the family of continuous-time processes
most commonly used for modeling self-similar processes, characterized by a single
parameter 0 < H < 1, the Hurst exponent.

By definition, a fBm with parameter H is a self-similar Gaussian process,
beginning at the origin (i.e. BH(0) = 0) and has zero mean and stationary incre-
ments. Additionally, the normalized autocovariance function takes the following
form:

cBB(t, t
′) =

1

2
(|t|2H + |t′|2H − |t− t′|2H)

This processes can be considered as a generalization of the traditional Brow-
nian movement; i.e., unlike the latter, the fBm incorporates the possibility of
displaying non-trivial amounts of self-correlation in its increment process:

E (BH(t+ τ)−BH(t))(BH(t)−BH(t− τ)) = (22H−1 − 1)|τ |2H

Thus, the special case H = 1
2 is actually an ordinary Brownian motion, since

it provides the necessary (i.e. full) degree of independence.

About fGn processes. Fractional Gaussian noise is defined as the increment
of its associated fBm process:

GH,δ ,
1

δ
(BH(t+ δ)−BH(t))

which by definition determines a family of stationary processes. In case of the
normalized fBm, the resulting autocorrelation function takes the following form:
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cGG(t+ τ, t) =
1

2
|τ |2H

(
|1 + δ/τ |2H + |1− δ/τ |2H − 2

)
In addition, it can be proven that it verifies:

cGG(t+ τ, t) ∼ H(2H − 1)|δ|2|τ |2(H−1), τ � δ (3)

That is, fGn processes with H > 1
2 exhibit long memory since its correlation

function shows a sublinear decay rate with exponent β = 2(H − 1).

3.3 Wavelet analysis of LRD processes

In section 3.1 we briefly discussed an important, well-known consequence of the
long memory feature, i.e. the practical issues that complicate the estimation pro-
cesses using traditional analysis tools. On the other hand, it has been shown [5]
[6] that the wavelet decomposition of an LRD process can mitigate these effects:
under certain conditions, the transformed processes dx(j, k) do not exhibit long
range dependencies, but instead residual short-range correlations (i.e. SRD).

An additional property from the wavelet decomposition is that the power law
that describes the second order behavior, formulae (1) and (2), is also present
in the transformed domain: E |dX(j, k)|2 ∼ 2jγcfC(γ, ψ0) j → +∞, where cf
is a constant, C(γ, ψ0) =

∫
|f |−γ |Ψ0(f)|2 df , and the symbol ψ0 identifies the

mother wavelet (for a sketch of the proof of this result, see for example [5] or
[6]).

Since these behaviors can be generalized to an ample family of scale invariant
processes, to summarize the above and following the guidelines used in [4] the
properties are formalized as follows: let X = X(t) be a continuous time random
process with scaling exponent α. Then,

– P1: the process {dX(j, k), k ∈ Z} is stationary with nψ ≥ (α−1)/2, and the
variance E |dX(j, k)|2 reproduces the power law of the original process under
a given range of octaves: that is, for j1 ≤ j ≤ j2 we have E |dX(j, k)|2 =
2jαcfC(α,ψ0). Here, nψ stands for the amount of vanishing moments of ψ0,
the mother wavelet; and cfC depends on the actual form of the stochastic
process X(t).

– P2: the details {dX(j, k), k ∈ Z} conform a stationary process, and do not
exhibit long-range dependencies but instead local short-term correlations,
i.e. dX is an SRD process on the condition that nψ ≥ α/2.

These two properties are central for the conception of the wavelet based
estimation tool, which we discuss below.

3.4 Estimation of the scaling exponent

Property P1 suggests that it is possible to estimate the scaling exponent α us-
ing the fact that log E |dX(j, k)|2 ∼ jα+ log cfC. Of course, this would require
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estimating the argument of the logarithm from a finite-length realization (n
samples) of the underlying stochastic process X(t). Following this line of reason-
ing, a semi-parametric wavelet-based estimator has been proposed in [3]: more
specifically,

yj = log2(1/nj
∑
k

|dX(j, k)|2)− gj (4)

α̂ =

j2∑
j1

wjyj (5)

b̂ =

j2∑
j1

vjyj (6)

where nj = Θ(n/2j) stands for the amount of available detail coefficients in
octave j, and the interval [j1, j2] represents the range of octaves spanning the
scaling phenomenon, and so the region of interest for the linear regression. The
deterministic quantities gj = 	(nj/2)/ ln 2− log(nj/2) are meant to correct the
bias related to the fact that log E |dX(j, k)|2 6= E log |dX(j, k)|2 under Gaussian
assumptions. Here, 	(x) = Γ ′(x)/Γ (x) represents the psi or digamma function.
Coefficients wj and vj come from the standard weighted linear regression tech-
nique over the set of points (j, yj) spanning j1 ≤ j ≤ j2, with weights 1/σ2

j , the
inverse of the variances of the yj in order to provide more influence to the points
with a smaller amount of variations.

Due to the lack of a closed expression for the variances of the yj in the
general case, in practice it is common to use the following approximation which
is obtained under Gaussian and strict decorrelation hypothesis in the wavelet
domain:

σ2
j = var yj = ζ(2, nj/2)/ ln 2

where ζ(s, q) stands for the Hurwitz zeta function. In practice, this equation is
used for both the computation of the linear regression, and to construct confi-
dence intervals for yj and α̂ under Gaussian assumption.

3.5 Automatic detection of the scaling onset

From the perspective of the estimation of scaling, the range of scales over which a
scaling regime could be present is a priori unknown, and hence needs to be iden-
tified within the context of the estimation process. Indeed, the detection of such
range, in the log-scale diagram, consists in the identification of the alignment
region(s) whose endpoints are j1 and j2. Such problem, as stated, cannot possess
a generic solution due to the fact that scaling properties are often of asymptotic
nature, lacking a clear frontier that would enable us to precisely identify of the
frontiers as can be seen from equations (1) and (2).
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Fig. 1. Behavior of Q̂(j1) in the transition scale j∗1 detection algorithm for a couple of
FARIMA(1, d, 1) realizations. (Left, above) log-scale diagram of a realization of 100,000
samples of a stochastic process with (φ, d, θ) = (0.5, 0, 0). Note the outcome from the
algorithm, j∗1 = 5. (Left, below) representation of the amount of goodness of fit as a
function of the onset octave, where we observe a rapid improvement zone beginning in
octave 3. (Right, above) log-scale diagram for 100,000 samples of (φ, d, θ) = (0.3, 0.4,
0.7). (Right, below) evolution of the Q̂ metric.

In practice, the selection of the cutoff scales can be done using a chi-squared
heuristic techique to measure the goodness of fit of the linear regression [7]. The
main idea is to monitor the values of Q̂, the statistic for measuring the quality
of the fit as a function of the endpoints of the alignment zone, j1 and j2:

V̂ (j1, j2) =

j2∑
j=j1

(yj − α̂j − b̂)2

σ2
j

(7)

Q̂(j1, j2) = 1− FJ−2(V̂ (j1)) (8)

where Fm is the cumulative probability distribution function of a chi-squared
variable with m degrees of freedom, and J = j2 − j1 +1 represents the length of
the alignment interval. In these expressions, the J − 2 degrees of freedom result
from considering J points with two restrictions: the determination of the slope
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and abscissa. As we can see in (7), the V̂ statistic is a measure of the amount of
error between the data and the model, in the mean squared sense. This figure is
then input into Q̂, generating an index in [0, 1] that enables for the determination
of the goodness of the fit, since values of Q̂ near 1 indicate the adequacy of the
model, in opposition improper cases where the index approaches 0.

In practice, in the context of stochastic processes with long range depen-
dencies we have j2 → +∞, and these quantities only need to be monitored as a
function of j1 to obtain the threshold indicator of the beginning of the alignment
region. More specifically, the logic of the detection algorithm for LRD data has
been defined as follows.

Transition scale j∗1 detection algorithm for long memory processes

1. Determine the range [1, jND] in which Q̂(j1) is non-decreasing. If jND = 1
then set j∗1 = 1, else

2. Calculate the improvement ratios rj = Q̂(j)/Q̂(j − 1) for each j ∈ [2, jND].
Select a rapid improvement factor fac (defaults to 10) and find the largest
j such that rj > fac. If there is such j, set j∗1 equal to it; else set j∗1 = 1.
Finally, add one unit to the value of j∗1 .

As stated in [7], the design of this algorithm is centered around the premise
of minimizing the mean squared error E (α̂− α)2. By using these metrics, the
heuristic technique allows us to compute an approximation of the onset octave for
the LRD case. The reasoning presented in that work indicates good performance
results in numerous aspects and simulations; however, as we shall see below, an
(sub)optimal selection of the onset octave, in the MSE sense, can be detrimental
to the actual confidence levels of the experiments.

Example. Figure 1 shows the evolution of the goodness of fit metric in
the context of two FARIMA(1, d, 1) realizations. In both cases we observe a
remarkable increase of Q̂(j1) in the lower octave range, dubbed improvement
zone in the references. After this transitional area we notice the presence of the
alignment intervals: it is here where the long memory feature is present, leading
to a more stable behavior of the metric along the remaining portion of the octave
range.

4 Discussion

We now present the results of the simulations carried out in the context of this
work, which aim to test the performance of scaling onset detection algorithms
for LRD trajectories. We commence with a brief introduction to our simulation
environment, which has been originally conceived as a test tool for embryonic
versions of our own implementation of the wavelet estimator.

4.1 Simulation Environment

One of the key aspects of our software environment is that is has been structured
for reproducible analysis, enabling other parties (colleagues, etc.) to obtain the
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same results by running their own copy of the software. In order to cope with this,
we have adopted some of the advice in [1], in the form of a single master script
that builds all the analysis results from input data, which is readily available as
well. The source code of the experiments supporting this article is available in
[9].

Recall that the statistical properties of the wavelet estimator are derived un-
der Gaussian assumptions: therefore, the experiments below use synthetic sam-
ples of fractional Gaussian noise in order to evaluate some performance aspects of
the tool on an ideal environment. The meaningful MRA initialization technique
[8] is used for proper second order evaluation of discrete data. Unless explicitly
noted, in the following simulations we sample the (α, n) space using three dif-
ferent values of n, the input trajectory length: 1,000, 10,000, and 100,000. The
Math::Random::Brownian [2] implementation of the (exact) Davies and Harte
and (approximate) Dieker-Mandjes synthesis algorithms were used to generate
two sample sets covering the same portion of the (α, n) plane.

4.2 Confidence intervals for α̂

From equation (5) we can see that α̂ is a linear combination of the yj , which
have been shown to be asymptotically normally distributed under Gaussian and
strict decorrelation assumptions [4],

logµj
d∼N(jα+ log(cfC),

2(log e)2

nj
)

Because of this, α̂ itself can be considered as approximately Gaussian dis-
tributed, with variance σ2

α̂ =
∑
σ2
jw

2
j . In practice, confidence intervals for the

estimations of the scaling exponent are computed using these results.

Performance evaluation. Empirical estimations of the confidence coefficient
of α̂ are carried out for different values of (α, n), where n is the amount of samples
per synthetic fGn trajectory. Each pair is associated with 1,000 realizations of
a fGn process with said length and scaling exponent: by applying the scalens

software to these [9], we can estimate the confidence level of the experiment by
counting the amount of times the interval contains the actual value of the scaling
exponent. In every case, the intervals have been generated with the confidence
parameter set to 90%.

It is evident from table 1 that a non-trivial amount of observations of the
confidence coefficient are well under the value of 90% that was configured to
run the experiment. In other words, the intervals generated by the estimation
tool should contain, on average, the true value of α 90% of the times, however
evidence suggests that this is not the case.

As we explain below, this behavior can be understood by considering the
combined effects of the algorithm for automatic detection of the onset of the
alignment region on one hand, and the asymptotic nature of the long memory
effect on the other.
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α
sample length n

1k 10k 100k
jMSE
1 j∗1 ĉc jMSE

1 j∗1 ĉc jMSE
1 j∗1 ĉc

0.0 2 2 (60%) 76% 2 3 (98%) 89% 2 3 (99%) 91%

0.1 2 2 (59%) 75% 2 3 (98%) 89% 3 3 (95%) 88%

0.2 2 2 (59%) 75% 2 3 (97%) 90% 3 3 (90%) 82%

0.3 2 2 (60%) 74% 2 3 (97%) 88% 3 3 (82%) 79%

0.4 2 2 (59%) 72% 3 3 (97%) 88% 3 3 (70%) 76%

0.5 2 2 (58%) 70% 3 3 (97%) 87% 3 3 (63%) 73%

0.6 2 2 (61%) 71% 3 3 (95%) 87% 4 3 (54%) 75%

0.7 2 2 (58%) 69% 3 3 (96%) 88% 4 4 (54%) 75%

0.8 2 2 (58%) 67% 3 3 (97%) 87% 4 4 (60%) 73%

0.9 2 2 (57%) 67% 3 3 (95%) 86% 4 4 (64%) 75%

Table 1. Performance measurement of the α̂ statistic with automatic detection of
the onset of the scaling regime. Columns jMSE

1 indicate the optimum choice according
to the minimum mean squared error criterion, whereas j∗1 represent the octave most
frequently selected by the algorithm for a given pair (α, n). The figure in parentheses is
the rate of selection of said j∗1 , indicating suboptimal performance. Differences in 5 or
more points between the observed confidence coefficient (ĉc) and actual the simulation
parameter (90%) are highlighted in bold.

Effect of the transition scale j∗1 detection algorithm

Recall from section 3.5 that this algorithm, of heuristic nature, has been con-
ceived to detect the initial (i.e., lower) octave of the region in the logscale diagram
where the LRD phenomenon is present: this is done by defining the onset scale
as the one that gives minimum mean squared error defined as E (α̂− α)2.

From the previous discussion, it is natural to ask ourselves whether the ob-
served effectiveness of the confidence intervals is somehow related to the per-
formance of the detection algorithm. For this reason, we have instrumented the
simulation environment to obtain the actual values of j∗1 chosen by the heuristics:
as we can see in table 1, in the case of trajectory of 1,000 samples the detection
rate is close to 60%, indicating suboptimal performance under the MSE crite-
rion. Realizations of 10,000 units of length exhibit an outcome octave j∗1 = 3
more than 95% of the times; however we note that for 0.0 ≤ α ≤ 0.3 the optimal
threshold is jMSE

1 = 2 instead of 3.

Reevaluation with optimal choice j1 = jMSE
1 . We now redo the experiment

replacing the heuristics for choosing j1 with the optimal selection strategy under
MSE criterion, using the appropriate (pre-computed) values of jMSE

1 for each
point in the sampling of the (α, n) plane. A quick glance at table 2 reveals a
partial improvement in the performance of some of the confidence intervals.

Nevertheless, these results suggest that an optimal choice of the onset scale,
under minimum MSE criterion, does not necessary ensure proper performance
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α
sample length n

1k 10k 100k
jMSE
1 j1 ĉc jMSE

1 j1 ĉc jMSE
1 j1 ĉc

0.0 2 2 (100%) 89% 2 2 (100%) 88% 2 2 (100%) 74%

0.1 2 2 (100%) 90% 2 2 (100%) 84% 3 3 (100%) 88%

0.2 2 2 (100%) 90% 2 2 (100%) 79% 3 3 (100%) 83%

0.3 2 2 (100%) 88% 2 2 (100%) 71% 3 3 (100%) 80%

0.4 2 2 (100%) 88% 3 3 (100%) 89% 3 3 (100%) 78%

0.5 2 2 (100%) 85% 3 3 (100%) 88% 3 3 (100%) 74%

0.6 2 2 (100%) 85% 3 3 (100%) 88% 4 4 (100%) 91%

0.7 2 2 (100%) 86% 3 3 (100%) 88% 4 4 (100%) 90%

0.8 2 2 (100%) 84% 3 3 (100%) 87% 4 4 (100%) 88%

0.9 2 2 (100%) 84% 3 3 (100%) 86% 4 4 (100%) 90%

Table 2. Reevaluation of the statistical performance of α̂, disabling the heuristics for
automatic detection of the scaling onset. Here, we set j1 to jMSE

1 , the optimal choice
under MSE criterion instead of the algorithm presented in section 3.5. Compare this
with the data from table 1. Again, differences in 5 or more points between the observed
confidence coefficient (ĉc) and the simulation parameter (90%) are highlighted in bold.

of the confidence intervals. As we shall see below, this behavior can be explained
by the bias-variance tradeoff relation inherently present in the estimation tool.

Effect of the scaling onset in the performance of the CIs

As mentioned in section 3.4, the estimation of the scaling exponent is computed
using the detail coefficients from the DWT operation, dX(j, ·). In particular,
we observed an exponential reduction of the amount of useful information at
each octave, nj = Θ(n/2j). Because of this, in the context of our discussion the
variances of yj and α̂ increase monotonically with j and j1 respectively.

On the other hand, due to the asymptotic nature of the LRD behavior,
equations (1) and (2), we can expect higher deviations from the linear trend in
the lowest portion of the wavelet analysis, mainly because of the high frequency
content of those octaves. Therefore, it is reasonable to expect a higher amount
of estimation bias with low values of the onset octave.

This tradeoff relationship between the mean squared error E (α̂−α)2 and j1
can be observed in the upper region of figure 2: there, empirical estimations of
the mean squared errors are shown for different values of α and trajectory sizes.
In every case, we observe the presence of an optimal scale in the sense of the
MSE criterion, jMSE

1 , to the left of which the error is dominated by estimation
bias; whereas variance has stronger influence on the opposite direction of j.

An alternative view is presented in the lower portion of the same figure,
where we can clearly see the early detrimental effect of j1 on the estimation
bias, and a progressive increase on the variance of α̂ with higher values of the
onset threshold, in the form of wider histograms for α̂.
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Fig. 2. Influence of the scaling onset parameter, j1, on the mean squared error. The
uppermost plots show an estimation of the MSE as a function of j1. An alternative
view is shown below, in the form of the observed histograms for α̂ as a function of
j1. Highlighted in bold are the optimal values of the onset scale under the minimum
MSE criterion. It is interesting to contrast these with the informations from table 2.
In general, and because the LRD power law behavior of fGn of asymptotic nature,
we observe lower variance and higher estimation bias in the small-scale region, due to
departures from the linear progression. On the opposite direction of j1 we find increas-
ingly higher variance and wider histograms for α̂, due to lower amount of available
detail coefficients in the highest octaves of the wavelet analysis.

5 Conclusions

We have presented quantitative evidence aiming to understand the statistical
performance of a wavelet-based estimator for scale invariant phenomena. In par-
ticular, we have payed attention to the behavior of the scaling exponent statistic,
α̂, which is of special relevance in the study of computer networks.

This work is actually a detachment from a previous initiative by the authors,
where we worked on an independent implementation of the wavelet estimator and
contrasted the confidence levels of the intervals. The context of our analysis has
been limited to the study of the performance of the tool under ideal conditions,
Gaussian LRD trajectories such as fGn. This has been done on purpose in order
to contrast our observations with the predictions made in the bibliography.
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Within the context of our simulation environment, we have observed signifi-
cant deviations in the statistical performance of the confidence coefficient of the
scaling exponent estimations. This can be attributed to the suboptimal behavior
of the algorithm for automatic detection of the scaling onset on one hand, which
is constructed around the premise of minimizing the expectation of the mean
squared error. On the other hand, we argue that such goal can be detrimental to
the actual confidence levels of the intervals, because the inherent bias-variance
tradeoff seeking to minimize the MSE can introduce a non-trivial amount of
displacement in the actual position of the intervals. Since the confidence regions
are built on Gaussian assumptions and are thus symmetrical, we conclude that
an optimal strategy for choosing j1, in the minimum MSE sense, cannot provide
sufficient control over the estimation bias for meaningful confidence levels.

The reasoning presented along the lines of our work allows us to argue that,
when using the wavelet-based estimation tool to study scaling exponents, an
improper detection of the onset of the scaling region can have a significant detri-
mental effect in the determination of the confidence levels, which, in turn, can
compromise the estimation and statistical inference processes.
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