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Abstract. Affine estimation has emerged as a promising technique to
reduce the mean squared error (MSE) between the estimated parameters
and the true value of these parameters. The aim of this paper is to obtain
an affine estimator for the frequency of a complex sinusoid corrupted by
white gaussian noise. Additionally, an adaptive technique is presented.
The simulation results clearly show that affine estimators have better
performance than unbiased estimators such as the maximum likelihood
estimator (MLE) and the Fu-Kam approximation.
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1 Introduction

The estimation of the parameters (amplitude, frequency and phase) of a complex
sinusoid in additive white gaussian noise has been a central field of study in
communications and signal processing for the last four decades. Moreover, it is
still a very active research area because of its wide applicability.

Rife and Boorstyn [1] published in 1974 the first method for obtaining the
maximum likelihood estimators (MLE) of the parameters from discrete-time
observations. This method consists in using the periodogram for obtaining all
the relevant information for constructing the estimators. They also presented
the Cramér-Rao Lower Bound (CRLB) for all the parameters.

In 1985, Tretter [2] proposed a simplified noise model and developed a linear
regression estimator that has the advantage of being computationally simpler
than the periodogram. This estimator converges to the MLE for large values
of signal-to-noise ratio (SNR). In 1989, Kay [3] extended this noise model for
obtaining a faster estimator.

Several other techniques were developed since then, including the use of FFT
methods with different windows [4], Markov-based estimation [5], adaptive fil-
tering [6], Kalman filtering [7], nonlinear techniques [8], among others.
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In particular, H. Fu and P. Y. Kam [9] published in 2007 a more accurate noise
model and presented an approximation of the MLE for high SNR that admits a
recursive calculation of the estimator, as more samples become available.

It is well known that there exists biased estimators that outperform unbiased
ones in terms of MSE and that these biased estimators can be obtained from
transformations of the unbiased ones [10,11,12]. One particular idea for these
transformations, developed by Y. C. Eldar [13,14,15], consists in obtaining a
biased estimator through an affine transformation of an unbiased one,

h1(X) = a h(X) + b (1)

where X is the sample, a, b are constants, and h(X) is an unbiased estimator,
E[h(X)] = θ. Estimators obtained in this way will be called affine estimators or
estimators with affine bias. An exhaustive analysis of these type of estimators
was done in [16] and a complete characterization and a further generalization
was carried out in [17].

The main objective of this paper is to obtain affine estimators for the fre-
quency of a complex sinusoid corrupted by white gaussian noise by application
of appropriate affine transformations [17] to the maximum likelihood estima-
tor [1] and the Fu-Kam [9] approximation. Moreover, a recursive algorithm for
improving the estimation is also presented.

In section 2 the model used will be discussed, in section 3 the Cramér-Rao
Lower Bound is obtained, and in sections 4 and 5 the maximum likelihood es-
timator and the Fu-Kam approximation to the MLE are developed. The affine
estimators are constructed in section 6, results of some simulations can be found
in section 7 and, finally, conclusions are presented in section 8.

For the rest of this work, there will be some considerations: boldface letters
will be used to denote vectors and capital letters to denote random variables;
X ∼ N (µX,ΣX) means that X is a gaussian random vector with mean µX

and covariance matrix ΣX; x∗ is the conjugate of the elements of x, xT is the
transpose of x, xH is the hermitian (conjugate of elements and transpose) of x;
In is used to denote the identity matrix of dimension n× n.

2 Circularly-Symmetric Gaussian Random Vectors

There are some interesting issues about complex random variables, as explained
in [18], and that will be summarized here. The use of complex random variables
in estimating the frequency of a complex sinusoid is essential because the noise
will be modelled as a complex random variable in order to make the development
more tractable. In this paper, the attention will be restricted to gaussian random
variables; for the more general case, see [19,20,21].

The most striking aspect of the work by Picinbono [18] is that if two jointly
gaussian random vectors, X and Y, are to be described in a complex form, say
Z = X + jY, then it is not sufficient with the knowledge of the probability
density function (pdf) of Z, but it is the joint distribution of [ZT ZH ]T what is
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actually needed. This implies that the vector space of [XT YT ]T ∈ R2n cannot
be simply reduced to the complex space of Cn.

Let X ∼ N (0,ΣX) ∈ Rn and Y ∼ N (0,ΣY) ∈ Rn, the joint pdf is

pX,Y(x,y) =
1

(2π)n(det (ΣR))
1
2

exp

(
−1

2

[
xT yT

] [ ΣX ΣXY

ΣYX ΣY

]−1 [
x
y

])
(2)

where ΣXY = E[XYT ], ΣYX = E[YXT ] and

ΣR =

[
ΣX ΣXY

ΣYX ΣY

]
(3)

Through the invertible linear transformation
[
ZT ZH

]T
=M

[
XT YT

]T , with
M =

1

2

[
In In
−jIn jIn

]
(4)

and where In is used to denote the identity matrix of dimension n× n, the pdf
of
[
ZT ZH

]T can be obtained,

pZ,Z∗(z, z∗) =
1

πn(det (ΣC))
1
2

exp

(
−1

2

[
zT zH

] [ΣZ CZ

CH
Z Σ∗Z

]−1 [
z
z∗

])
(5)

where ΣZ = E[ZZH ] is the covariance matrix and CZ = E[ZZT ] is another
second order statistic, called the relation matrix. It was shown, then, that the
joint distribution of

[
ZT ZH

]T is needed in order to completely describe the
vector

[
XT YT

]T .
In all works related with complex sinusoids, the noise is always modelled as a

complex circularly-symmetric gaussian random vector. This means that the pdfs
of Z and ejαZ are the same for all α ∈ R. In terms of the recent development,
circular symmetry is equivalent to the relation matrix CZ being zero. This last
statement implies that, if Z is circularly symmetric, then it completely describes
the random vector

[
XT YT

]T turning the pdf of Z into

pZ(z) =
1

πn det (ΣZ)
exp

(
−zHΣ−1z z

)
(6)

Moreover, if ΣZ is real, then X and Y have to be independent and identically
distributed [19],

ΣZ ∈ Rn×n ⇒ ΣX = ΣY = Σ , ΣZ = 2Σ , ΣXY = ΣYX = 0 (7)

Finally, the model for the data will be

R(k) = aej(ωk+θ) +N(k) (8)

where a and θ are known, ω is deterministic and unknown, {N(k)} is a discrete-
time, circularly-symmetric, zero-mean, complex additive white gaussian noise
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(AWGN), with pdf given by (6) and E[N(k)N∗(k + m)] = σ2δ(m), with σ2

known. The pdf of the sample {R(k)}n−1k=0 will be given by

p{R(k)}({r(k)}|ω) =
1

(πσ2)n
exp

(
− 1

σ2

n−1∑
k=0

|r(k)− aej(ωk+θ)|

)
(9)

where {r(k)} = {r(k)}n−1k=0 is a realization of the sample. The SNR is defined as
SNR = a2/σ2.

3 The Cramér-Rao Lower Bound

The Cramér-Rao Lower Bound [22,23] is a useful benchmark to which estimators
can be compared. It sets the minimum possible variance an unbiased estimator
can have. In this case, it is observed that the pdf (9) can be written as

ln
(
p{R(k)}({r(k)}|ω)

)
= (10)

n ln

(
1

πσ2

)
− 1

σ2

n−1∑
k=0

(
(rRe(k)− a cos(ωk + θ))

2
+ (rIm(k)− a sin(ωk + θ))

2
)

where r(k) = rRe(k)+jrIm(k). Differentiating twice with respect to ω and taking
the opposite, yields

u({r(k)}, ω) = 2a

σ2

n−1∑
k=0

k2 (rRe(k) cos(ωk + θ) + rIm(k) sin(ωk + θ)) (11)

Evaluating (11) in {R(k)} (sample given by random variables described in equa-
tion 8) and taking the expectation gives,

E[u({R(k)}, ω)] = 2a2

σ2

n−1∑
k=0

k2 (12)

due to the independence property given in 7. Finally, the CRLB for any unbiased
estimator ω̂{R(k)} turns to be

Var(ω̂{R(k)}) ≥
σ2

a2
3

n(n− 1)(2n− 1)
(13)

and is found to depend inversely on the SNR and to be highly sensitive (n3) to
the number of samples.

4 The Maximum Likelihood Estimator

The maximum likelihood estimator, ω̂ML{R(k)}, is the value of ω that maximizes
the pdf of the sample (9) for a given set of values. Rife and Boorstyn developed
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the MLE for the case of the complex sinusoid in [1]. It is observed from equation
(10) that maximization with respect to ω will be equivalent to maximizing

L0 = − 1

n

n−1∑
k=0

(
(rRe(k)− a cos(ωk + θ))

2
+ (rIm(k)− a sin(ωk + θ))

2
)

(14)

which can be turned into

L = 2aRe

{
e−jθ

(
1

n

n−1∑
k=0

r(k)e−jωk

)}
(15)

Finally, the MLE becomes

ω̂ML{R(k)} = max
ω

Re

{
e−jθ

(
1

n

n−1∑
k=0

R(k)e−jωk

)}
(16)

Rife and Boorstyn proposed a search routine, divided in two parts, first a
coarse search and then a fine search around the value found in the first part. They
found that the estimator becomes biased for low values of SNR due to outliers
misleading the coarse search to incorrect values of ω. Finally, it is necessary to
observe that the variance of the estimator will be equal to the CRLB as long as
the estimator is unbiased.

5 The Fu-Kam Approximation

In their paper published in 2007, Fu and Kam [9] proposed an estimator that
would be computationally easier and that would admit a recursive calculation.
The approximation presented is valid for high values of SNR as shown in the
derivation. The main difference from the MLE is that the polar decomposition
of the samples is used, r(k) = |r(k)|ej]r(k). Then, the pdf of the samples can be
expressed as,

p{R(k)}({r(k)}|ω) = c exp

(
2A

σ2

n−1∑
k=0

|r(k)| cos(]r(k)− (ωk + θ))

)
(17)

where c is a constant, independent of ω. Taking logarithm, differentiating with
respect to ω and setting the result equal to zero, yields

n−1∑
k=0

k|r(k)| sin(]r(k)− (ωk + θ)) = 0 (18)

If high SNR is assumed, it is reasonable to suppose that ]r(k) is close to
(ωk+θ) because the noise power will not be high enough to cause large deviations
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of the measured angle from its true value, then the approximation sin(x) ≈ x
becomes valid, turning this last equation into

n−1∑
k=0

k|r(k)|(]r(k)− (ωk + θ)) = 0 (19)

where the estimator can be derived,

ω̂FK{R(k)} =

∑n−1
k=0 k|R(k)|(]R(k)− θ)∑n−1

k=0 k
2|R(k)|

(20)

It is readily observed that the numerator and the denominator of this estimator
can be calculated recursively.

For obtaining the bias and the mean squared error of the estimator, an ap-
proximated model for the noise is developed [9] which is an improvement of
Tretter’s model [2]. Using this model, which is valid for high SNR, the estimator
is shown to be unbiased, and the variance turns out to be

Var(ω̂FK{R(k)}) =
1

2a2/σ2 + 1

5

3n2 − 3n− 1
(21)

6 The Affine Estimators

The technique of affine estimation consists in introducing a well-known and
controlled bias to some unbiased estimator in order to reduce the mean squared
error (MSE), at least in a region of interest, typically exploiting some previous
information about the unknown parameter.

In particular, the affine estimators developed in [16,17,24] assume that the
parameter lies in some known region R = {ω ∈ R : ωA < ω < ωB}. This
is a perfectly valid assumption for the frequency of a single tone estimation,
making these estimators ideal for lowering the MSE of any unbiased estimator,
especially for low SNR or a small sample size.

The basic idea for obtaining the affine estimator, ω̂ε{R(k)}, is to apply an
appropriate affine transformation to an unbiased estimator ω̂{R(k)} of the pa-
rameter, this is,

ω̂ε{R(k)} = a ω̂{R(k)} + b (22)

The transformation has to be such that MSE(ω̂ε{R(k)}) <MSE(ω̂{R(k)}) for all
ω ∈ R, where

MSE(ω̂ε{R(k)}) = (a− 1)2ω2 + 2b(a− 1)ω + b2 + a2V (23)

with V = Var(ω̂{R(k)}) = constant, and ω the true value of the frequency.
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It was shown in [17] that the complete family of affine estimators of the form
(22) is characterized by the values of a and b given by

a =

(
(ωB + ε)− (ωA − ε)

2

)2

− V(
(ωB + ε)− (ωA − ε)

2

)2

+ V

(24a)

b =
2V(

(ωB + ε)− (ωA − ε)
2

)2

+ V

ωA + ωB
2

(24b)

for any ε > 0, and where V is the constant variance of the unbiased estimator,
MSE(ω̂{R(k)}) = V . This is the case for the estimators developed in sections
4 and 5 whose variance is observed not to depend on ω (for other forms of the
variance, see [17]).

It can also be found in [17] that if ε = 0, then the estimator of equations
(22,24) is equal to the RB-Affine estimator [16],

ω̂RB{R(k)} = aRB ω̂{R(k)} + bRB (25a)

aRB =
γ − 1

γ + 1
; bRB =

2

γ + 1

ωA + ωB
2

(25b)

where

γ =

(
ωB − ωA

2

)2

V
(26)

Also, if ε =
√
V + (ωB−ωA)2

2 −
(
ωB−ωA

2

)
, then the estimator (22,24) becomes

equal to the estimator developed in [24],

ω̂E{R(k)} = aEω̂{R(k)} + bE (27a)

aE =
γ

γ + 1
; bE =

1

γ + 1

ωA + ωB
2

(27b)

Finally, the other important remark made in [17] is the fact that there is
only one value of ε which minimizes MSE(ω̂ε{R(k)}) for a given value of ω. This
observation led the way to the development of an adaptive algorithm that ad-
justs the value of ε recursively as more samples become available. It consists in
proposing an inital ε and using it to estimate the value of ω from the unbiased
estimator ω̂{R(k)}. Then, this estimation is used for finding the ε that minimizes
MSE(ω̂ε{R(k)}) as if that estimation were the true value of the parameter. Fi-
nally, this recently obtained value of ε is used for performing a new estimation,
this time with another sample and a better value of ω̂{R(k)}, obtaining a better
approximation of ω and then correcting again the value of ε, recursively.

This will be very useful in combination with the recursive aspect of the Fu-
Kam approximation.
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7 Examples

For the first two examples, n = 6 samples of a complex discrete-time sinusoid in
AWGN with a = 1 and θ = π

4 are considered. The parameter is supposed to lie
in the region R with ωA = π

32 and ωB = 3π
32 . The true value of the parameter is

ω = π
16 . The simulation is carried out for different values of SNR repeating 1000

times for each value in order to obtain a better estimate of the MSE.
The results for the MLE are shown in figure 1.
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Fig. 1. MSE as a function of SNR for the MLE and the affine transformations given
by equations (25) and (27).

It is easily observed that both affine estimators perform better than the MLE
for low SNR.

The behaviour of the RB-Affine estimator can be easily explained: for SNR <
0dB, the value ofMSE(ω̂ML{R(k)}) is greater than the maximum V0 (see [16]) so
ω̂RB{R(k)} is unreliable (it performs better than the MLE because the true value
of ω is in the center of the region R). Once the value of MSE(ω̂ML{R(k)}) is
lower than V0 (which happens at SNR > −10dB) the estimator becomes useful
and performs better than the Eldar estimator as it was expected, being the true
value of the parameter in the center of the region R (it is shown in [17] that
the optimum affine estimator for ω in the center of the region is the RB-Affine
estimator).

The reason why the Eldar estimator is the best for SNR < 0 dB is that1, for
low values of γ (low values of SNR), aE → 0 and ω̂E{R(k)} → bE which happens
to be the center of the interval. This holds down the estimator and prevents it to
go to infinity as the noise rises. This is relaxed when γ becomes bigger, causing
the MSE to worsen a little.
1 The simulation was carried out for values of SNR ∈ B, where B = {−20 dB, −10 dB,
0 dB, 10 dB, 20 dB}. This causes the MSE to be undetermined between −10 dB and
0 dB, where the transition occurs.
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In figure 2 the MSE for the Fu-Kam estimator and its affine transformations
are shown.
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Fig. 2. MSE as a function of SNR for the Fu-Kam estimator and the affine transfor-
mations given by equations (25) and (27).

An analysis similar to that carried out for figure 1 applies for figure 2.
The estimators can be further improved if the length of the region R is

reduced as they are highly sensitive to this length, especially for low values of
SNR. On the other hand, if the region is widened they still perform better than
the MLE, although much closer to it.
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Fig. 3. MSE as a function of the number of samples available for estimation, for the
Fu-Kam approximation, the Eldar estimator (27) and the ε−estimator (22,24).

The last example intends to show the performance of the adaptive algorithm.
In this case, the situation is the same as for the previous examples (6 samples, a =
1, θ = π

4 , ω = π
16 , ωA = π

32 , ωB = 3π
32 ) but the SNR is held fixed at SNR = 10dB.
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In this case, only the Fu-Kam estimator is used and it is calculated recursively as
each of the 6 samples is available. The ω̂ε{R(k)} estimator is obtained (equations
22,24) using the adaptive algorithm explained in the previous section. The Eldar
estimator (equation 27) is also shown for comparison.

Figure 3 show the MSE of the three estimators as a function of the number
of samples available for estimation.

This simulation clearly shows that as more samples are available, the ω̂ε{R(k)}
estimator becomes better because of the adjusting value of ε. As seen in equations
(23,24), the mean squared error of the estimator ω̂ε{R(k)} depends on the value
of ε and, in the algorithm illustrated in figure 3, this value is being continuously
adjusted in order to decrease the MSE, using each estimation of ω as if it were
the true value of the parameter.

8 Conclusions

In this paper, affine estimators were used to estimate the frequency of a complex
sinusoid corrupted by additive white gaussian noise.

It was shown that affine estimators perform better than the MLE and the
Fu-Kam approximation, especially for low values of SNR and/or small sample
size, making them excellent choices when the situation is adverse (in terms of
SNR).

An adaptive algorithm was also presented for improving recursively the affine
estimator, using the Fu-Kam approximation as the unbiased estimator.

References

1. Rife, D.C., Boorstyn, R.R.: Single-tone parameter estimation from discrete-time
observations. IEEE Transactions on Information Theory IT-20(5) (September
1974) 591–598

2. Tretter, S.A.: Estimating the frequency of a noisy sinusoid by linear regression.
IEEE Transactions on Information Theory IT-31(6) (November 1985) 832–835

3. Kay, S.: A fast and accurate single frequency estimator. IEEE Transactions on
Acoustics, Speech and Signal Processing 37(12) (December 1989) 1987–1990

4. Chan, Y.T., Ma, Q., So, H.C., Inkol, R.: Evaluation of various fft methods for
single tone detection and frequency estimation. In Thorburn, P., Quaicoe, J.,
eds.: Engineering Innovation: Voyage of Discovery. Volume II of Canadian Con-
ference on Electrical and Computer Engineering, Conference Proceedings., IEEE
Newfoundland and Labrador Section, IEEE Service Centre (May 1997) 211–214
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