
An efficient evolutionary algorithm for the deadline
problem in project management

Matı́as Galnares and Sergio Nesmachnow

Universidad de la República, Uruguay
{mgalnares,sergion}@fing.edu.uy

Abstract. This article presents an efficient evolutionary algorithm applied to
the deadline scheduling in project management, a NP-hard problem with major
relevance in software engineering and scheduling activities. The evolutionary
algorithm has been specifically designed to provide accurate and efficient so-
lutions, by using operators that allow realistic problem instances to be solved.
Efficient numerical results are reported in the experimental analysis performed
on standard problem instances. The experimental results demonstrate that the
proposed evolutionary algorithm is able to outperform one of the best well-known
deterministic techniques for the problem in reduced execution times, specially on
highly complex instances.

1 Introduction

In general, project management involves planning and organizing a set of activities in
order to generate a product or offer a service in the best possible way [11]. A project
duration can often be reduced by accelerating some of its activities by employing
additional resources that increase the cost of the entire project. In this case, each activity
can be performed by using a set of alternatives (modes) which are defined by a time-cost
pair. Usually, only a reduced number of modes are taken into account for each activity.
A key problem consists in finding a schedule that assigns modes to activities, providing
a good tradeoff between the duration and cost of each activity, enabling the best project
performance. In this article, the scheduling problem addressed is the Deadline Problem
in Project Management (DPPM), which accounts for both precedence between activities
and deadline for its execution. In the related literature, it is also known as the Discrete
Time/Cost Trade-off Problem (DTCTP).

Traditional scheduling problems are NP-hard [8], thus classic exact methods are
only useful for solving problem instances of reduced size. Heuristics and metaheuristics
are promising methods for solving scheduling problems, since they are able to get
efficient solutions in reasonable time, even for large problem instances. Evolutionary
algorithms (EAs) have emerged as flexible and robust metaheuristic methods for solving
this kind of complex problems, achieving the high level of accuracy and efficiency also
shown in many other application areas [3].

The main contributions of this manuscript are: i) to introduce an efficient EA to
solve the DPPM, implemented to compute results for realistic instances in reasonable
execution times, and ii) to efficiently compute accurate results, which outperform pre-
vious results in literature, for a set of problem instances with tight deadline constraints.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 165

Overall, the proposed EA was able to compute ten new best solutions for the set of 36
problem instances tackled.

The manuscript is structured as follows. The next section describes the paradigm of
evolutionary computation. The DPPM formulation is introduced in Section 3. Section
4 reviews previous works on EAs applied to solve the DPPM and related variants.
The implementation details of the proposed EA are described in Section 5. The
experimental analysis and the discussion of the results are presented in Section 6, while
the conclusions and main lines for future work are formulated in Section 7.

2 Evolutionary algorithms

EAs are non-deterministic methods that emulate the evolutionary process of species
in nature, in order to solve optimization, search, and other related problems [3]. In
the last twenty-five years, EAs have been successfully applied for solving optimization
problems underlying many real applications of high complexity.

The generic schema of an EA is shown in Algorithm 1. An EA is an iterative
technique (each iteration is called a generation) that applies stochastic operators on
a pool of individuals (the population P) in order to improve their fitness, which is
a measure related to the objective function. Every individual in the population is the
encoded version of a solution for the problem. The initial population is generated by a
random method or by using a specific heuristic for the problem. An evaluation function
associates a fitness value to every individual, indicating its suitability to the problem.
Iteratively, the probabilistic application of variation operators like the recombination
of parts from two individuals or random changes (mutations) are guided by a selection-
of-the-best technique to tentative solutions of higher quality.

The stopping criterion usually involves a fixed number of generations or execution
time, a quality threshold on the best fitness value, or the detection of a stagnation
situation. Specific policies are used to select the groups of individuals to recombine (the
selection method) and to determine which new individuals are inserted in the population
in each new generation (the replacement criterion). The EA returns the best solution
ever found in the iterative process, taking into account the fitness function.

Algorithm 1 Schema of an evolutionary algorithm.
1: initialize(P(0))
2: generation← 0
3: while not stopcriteria do
4: evaluate(P(generation))
5: parents← selection(P(generation))
6: offspring← variation operators(parents)
7: newpop← replacement(offspring, P(generation))
8: generation ++
9: P(generation)← newpop

10: end while
11: return best solution ever found

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 166

3 Deadline Problem in Project Management

The DPPM formulation considers the following elements:

– Every project has a set of activities A = {a1,a2, . . . ,aN}. Since some activities may
require the completion of some other activities before they begin, a precedence
function P is defined, where Pi is the set of immediate predecessors of activity ai.

– A set of execution modes Mi = {mi1,mi2, . . . ,miRi} is defined for each activity ai,
where each activity must be assigned to exactly one mode.

– For each activity ai and each mode mik, the time/cost pair (tik,cik) is defined, where
tik is the duration and cik is the cost. For any two modes mik1 and mik2 of a given
activity ai, tik1 < tik2 implies cik1 > cik2 , which means that in order to speed up
the time of a given activity additional resources are needed, i.e. higher costs are
demanded. In addition, k1 < k2 implies tik1 > tik2 for all activities ai, that is, the
activity modes are ordered by decreasing order of duration.

– Si denotes the starting time of activity ai.
– A deadline T for the project duration is established.

The goal of the DPPM is to find a schedule, i.e. a function f : MR→ AN that assigns
modes to the activities, which minimizes the total cost while fulfilling the precedence
constraints and subject to that the entire project duration cannot exceed the deadline T .

For the DPPM mathematical formulation, lets consider two dummy activities, a0
which precedes all those real activities with no predecessors, and aN+1, which is
performed after all activities having no successors are finished (thus, SN+1 is the entire
project duration), and the binary decision variables yik, whose values are given by Eq. 1.

yik =

{
1, if activity ai is assigned to mode mik

0, otherwise.
(1)

So, the DPPM formulation as optimization problem is presented in Eq. 2.

(2)

minimize ∑N
i=1 ∑Ri

k=1 cik× yik (2.1)

subject to ∑Ri
k=1 yik = 1, i = 1 . . .N (2.2)

Si ≥ S j +∑
R j
k=1 t jk× y jk, j ∈ Pi, i = 1 . . .N +1 (2.3)

SN+1 ≤ T (2.4)
Si ≥ 0, i = 1 . . .N +1 (2.5)

yik ∈ {0,1}i = 1 . . .N, k = 1 . . .Ri (2.6)

The objective of the DPPM is the minimization of the total cost (2.1). The
constraints of the problem are: each activity must be assigned to exactly one mode
(2.2); an activity cannot start before all its immediate predecessors are completed (2.3);
the entire project duration cannot exceed the deadline T (2.4); the starting time of the
activities must be non-negative (2.5); and the values of yik are binary (2.6).

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 167

4 Related work: heuristics and metaheuristics for the DPPM

This subsection presents a brief review of previous works that have proposed applying
heuristics and metaheuristics to the DPPM and related variants of the problem.

Pioneering works in scheduling demonstrated that when the time/cost functions are
linear, the DPPM can be solved by traditional methods such as Maximum Flow or Cut
Search algorithms. Dunne et al. [6] proved that all versions of the DTCTP are NP hard
in the strong sense. They also show that some special structures like pure parallel and
pure series are solvable in polynomial times.

Demeulemeester et al. [5] solved the Time/Cost Curve Problem by applying a
horizon-varying approach using iterative solutions of the DPPM, computed with a
Branch and Bound (BAB) algorithm using Linear Relaxation based lower bounds (LB).
The proposed approach solved small-sized instances up to 30 activities and four modes
easily, but failed to solve most of the tackled instances with 40 activities. Deineko et
al. [4] proved that there cannot exist a polynomial time approximation algorithm with a
performance guarantee better than 3/2 for any versions of the DTCTP.

Akkan et al. [1] computed LB for the DPPM using column generation techniques
based on a network decomposition approach. The proposed techniques are also applied
to construct feasible solutions. An extensive computational study revealed the satisfac-
tory behavior of the algorithm, which obtained solutions with average gap less than 7%
in only 6 seconds.

Hafizoglu and Azizoglu [9] introduced algorithms based on linear programming
relaxation to solve the DPPM, and defined two LB on the optimal total cost, namely
Naive Bound and LPR-Based LB. These LB were used in their BAB algorithm to
define the branching strategy and to eliminate non-promising partial solutions. The
BAB method solved instances with up to 150 activities and 10 modes in reasonable
execution times, showing a satisfactory behavior for loose deadline time constraints.
However, when faced with tighter constraints, the execution time of BAB increased
considerably, reaching an hour of computing time. Up to our knowledge, the BAB
algorithm is one of the best method for solving the DPPM, although it demands a large
computing time for instances with tight deadlines.

Anagnostopoulos et al. [2] developed five variants of a simulated annealing algo-
rithm for solving the problem. Although these variants differ on the number of iterations
in each cycle and on the stopping criterion, all of them achieve feasible solutions in a
few seconds, and all methods are able to solve large-sized instances up to 300 activities
with 4 modes. However, the quality of the computed solutions are only evaluated with
estimations of the global optima within a certain confidence interval.

Hazir et al. [10] proposed an effective exact algorithm to solve the time minimiza-
tion version of the DTCTP by decomposing it in to two simpler subproblems. The
master problem (MP) solves a relaxed version of DTCTP and generates trial values for
the integer variables and a LB for minimization. The subproblem is the original problem
with the values of the integer variables fixed by the MP. Instances from [1] with 85 to
136 activities, 2 to 10 modes, and tight deadline constraints are solved. According to
the results, 74% of these tight instances could be solved exactly in 10 minutes, 96% in
an hour and all the instances are solved in 90 minutes. Up to our knowledge, this is the
best method for solving the time minimization DTCTP with tight deadlines.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 168

Zhang et al. [13] extended the DTCTP by considering renewable and non renewable
resource-constrains simultaneously. A genetic algorithm was implemented for this
problem, which is able to solve instance with two renewable and two nonrenewable
resources and with up to 30 activities and three modes. The computation experiments
show that the algorithm solved these instances in no more than four seconds.

Recently, Fallah-Mehdipour et al. [7] included a new parameter, the quality of the
project, to previously considered time and cost parameters. Two EAs are used to solve
the proposed problem, namely Multi-objective particle swarm optimization (MOPSO)
algorithm and Non-dominated sorting genetic algorithm (NSGA-II). To evaluate both
algorithms, two different instances are considered with two objectives and 18 activities,
and three objectives and 7 activities are solved. The results show that both algorithms
are able to achieve feasible solutions, but no computing time are reported.

Summarizing, the analysis of the related works shows that solving DPPM/DTCTP
instances with tight deadline constraints in reduced execution times is a hard task. Thus,
there is still room to contribute in this line of research, by developing efficient and
accurate methods to solve the DPPM/DTCTP, able to handle the increasing complexity
of realistic instances with tight constraints in reduced execution times.

5 An efficient evolutionary algorithm for the DPPM

This section introduces the implementation details of the proposed EA, designed to
compute accurate solutions in reduced time and to provide a good exploration pattern,
by using ad-hoc variation operators.

The GAlib library. The algorithm was implemented on GAlib, a library for EAs
developed in C/C++ using the object oriented paradigm [12]. The library includes tools
to implement EAs and offers the possibility of developing user-defined representations
and operators.

Solution encoding. In canonical GAs, bits are used to represent a solution. However,
in the proposed EA a more complex encoding is defined to consider the prece-
dence relations between activities and the different modes in which each activity
can be performed. Each individual in the population is encoded as an array I =
(I0

0 , I
a
1 , ..., I

k
i , ..., I

b
N , I

0
N+1) where Ii represents the activity ai, and Ik

i denotes the activity
ai in mode mik. The execution order of activities is from left to right: all of the
predecessors of activity Ii are located before—i.e. at the left—of Ii. Fig. 1 shows an
example of solution encoding for a given set of activities and precedence relations
modeled according to a directed acyclic graph.

Fitness function. Let sol = (I0
0 , I

a1
1 , ..., Iai

i , ..., IaN
N , I0

N+1) be a solution. The fitness
function is given by Eq. 3, where C is the maximum cost of the project, i.e. the sum
of all activity costs assuming that all activities are in the costliest mode (the last mode).

f itness(sol) =C−
i=N

∑
i=1

cost(Iai
i) (3)

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 169

Fig. 1. Proposed encoding for DPPM solutions.

Feasibility check and repair mechanism. The operators used in the proposed
EA can generate non-feasible solutions that do not fulfill the deadline constraints.
Thus, a feasibility check/repair method is applied to correct non-feasible solutions.
The total time of the project cannot exceed the deadline T . Therefore, any indi-
vidual (I0

0 , I
a1
1 , ..., Iai

i , ..., IaN
N , I0

N+1) must fulfill that time(Ia0
1) + ...+ time(Iai

i) + ...+
time(IaN

N) ≤ T . When this condition is not verified, the feasibility repair mechanism
works by randomly selecting an activity and changing its mode in order to demand a
shorter execution time. This procedure is iteratively applied until the deadline constraint
is met.

Initialization. An initial population of feasible solutions is generated by applying
an ad-hoc randomized construction operator. Starting from I = (I0

0 , /0, ... /0, ... /0), a new
activity Ii in mode mik is randomly selected. If all the predecessors of activity Ii have
already been inserted in the solution, then Ik

i is inserted in the first available empty
location. Otherwise, another activity is selected. When the whole schedule has been
constructed, the feasibility check/repair mechanism is applied in order to meet the
deadline constraints.

Selection. The standard proportional selection method (roulette wheel) is used. An
individual i is selected to recombine/mutate with probability PSEL, given by Eq. 4, where
popSize is the size of the population in the EA.

PSEL(i) =
f itness(i)

∑popSize
j=1 f itness(j)

(4)

Exploitation: recombination. An ad-hoc single point crossover operator [3] is used
to recombine solutions in order to preserve the precedence relations between activities.
Two parents A = (A0

0,A
a
1, ...,A

b
r−1,A

c
r , ...,A

0
N+1), and B = (B0

0,B
d
1 , ...,B

e
r−1,B

f
r , ...,B0

N+1)
are selected from the population, using the selection operator, and an integer r is
selected randomly from the interval [1,N]. Then, from A and B two offspring C and D
are generated according to r: C = (A0

0,A
a′
1 , ...,A

b′
r−1,A

c
r , ...,A

0
N+1) where A0

0,A
a′
1 , ...,A

b′
r−1

are the elements A0
0,A

a
1, ...,A

b
r−1 in A, but using the modes in B,and arranged in the

order they are in B, and D = (B0
0,B

d′
1 , ...,Be′

r−1,B
f
r , ...,B0

N+1) where B0
0,B

d′
1 , ...,Be′

r−1 are

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 170

the elements B0
0,B

d
1 , ...,B

e
r−1 in B, but using the modes in A, and arranged in the order

they are in A. An example of recombination is presented in Fig. 2(a).
The crossover operator can generate solutions that exceed the maximum time

allowed, so the feasibility check/repair is used to assure that all constraints are met.

Exploration: mutation. Let A = (A0
0, ...,A

∗
p, ...,A

m
r , ...,A

∗
s , ...,A

0
N+1) be the individual

that is selected for mutation, where A∗r denotes the activity Ar in any (fixed) mode.
An integer r is selected at random from the interval [1,N]. Let activity Ap be the
last predecessor of activity Ar, and let activity As be the first successor of activ-
ity Ar. An integer d is selected randomly from the interval [p + 1,s− 1], then for
d ≤ r → A′ = (A0

0, ...,A
∗
p,A

m′
r ,A∗p+1, ...,A

∗
r−1,A

∗
r+1, ...,A

0
N+1), and for d > r → A′ =

(A0
0, ...,A

∗
r−1,A

∗
r+1, ...,A

∗
s−1,A

m′
r ,A∗s , ...,A

0
N+1).

The mutation operator maintains the precedence relations between activities, but the
new mode is randomly selected, so the feasibility check/repair is applied to guarantee
that the deadline constraint is met. An example of mutation is presented in Fig. 2(b).

Local search. The local search operator attempts to improve a given solution A =
(A0

0,A
a
1, ...,A

k
r , ...,A

b
N ,A

0
N+1) by evaluating to change the activities to a mode that

reduces the total cost. Starting on a randomly selected activity ar represented by Ar,
the operator cyclically analyzes all the N activities, attempting to change it to mode
mr(k−1), assuming that the activity is assigned to execute in mode mrk. The process
is iteratively applied until all activities have been analyzed and no change has been
applied, because making such changes will imply to violate the deadline constraint.
Thus, a new schedule A′ = (A0

0,A
a′
1 , ...,A

k′
r , ...,A

b′
N ,A

0
N+1) is generated.

The local search operator maintains the precedence relations between activities and
it also guarantees that the deadline constraint is not violated.

This LS is applied to all new individuals obtained from recombination and mutation
operators in each generation. In addition, LS is a time-consuming operator and has an
important influence in EA performance.

(a) Crossover. (b) Mutation.

Fig. 2. Example of the crossover and mutation operators

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 171

6 Experimental analysis

This section introduces the set of DPPM instances and the platform used in the
experimental evaluation. After that, the parameter setting experiments are commented.
The last subsection presents and discusses the numerical results of the proposed EA.

6.1 DPPM instances

Thirty-six instances in the benchmark from [1] are used to evaluate the proposed EA.
We selected the most complex instances, regarding two metrics: Coefficient of Network
Complexity (CNC), the ratio between number of activities and number of modes, and
Complexity Index (CI), that evaluates how close is an instance to a series-parallel one.

In the selected instances, the number of modes and the durations of each activity
are chosen using a discrete uniform distribution in [1,10] and [3,123], respectively.
The minimum cost ci,1 is uniformly selected in [5,15] for all i, and ci,k+1 is defined
recursively by ci,k+1 = ci,k +α(ti,k− ti,k+1), where α is also taken from a uniform dis-
tribution. The deadline values are defined by T = Tmin +θ(Tmax−Tmin), being Tmin and
Tmax the shortest and longest project durations respectively, and θ ∈ {0.15,0.30,0.45}.

6.2 Development and execution platform

The experimental analysis was performed on a Dell PowerEdge server with QuadCore
Xeon E5430 processor at 2.66 GHz, 8GB RAM, and CentOS Linux 5.2.

6.3 Parameter setting experiments

A study was performed to determine the best values of three EA parameters: popSize,
and the crossover (pC) and mutation (pM) probabilities. The candidate values were:
popSize ∈ [50,75,100], pC ∈ [0.85,0.90,0.95], and pM ∈ [0.01,0.05,0.1].

Thirty executions of the proposed EA were performed for two average-size DPPM
instances, with CI = 14, CNC = 6, N = 102, and θ = 0.15. Fig. 3 presents two samples
of the parameter configuration results for popSize = 50 and popSize = 100.

(a) Population size = 50 individuals. (b) Population size = 100 individuals.

Fig. 3. Two samples of the parameter configuration results.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 172

The best results were obtained when using the configuration popSize = 50, pC =
0.95, pM = 0.01, showing the importance of the crossover operator to compute accu-
rate solutions. No significant improvements were detected when increasing popSize,
suggesting that using a larger population is not useful to improve the results quality.

6.4 Empirical analysis

This subsection presents the experimental results of the proposed EA for the DPPM.

Comparison against previous results. Fifty executions of the proposed EA were
performed to solve each of the 36 DPPM instances studied. We perform a comparison
against the BAB method, the best known deterministic method for the problem. The EA
results are also compared with LB for the problem computed in [9] using CPLEX.

We defined the GAP metric in order to compare the quality of the solutions
computed by the proposed EA against BAB and LB. The GAP metrics are defined
in Eq. 5, where bestEA is the cost of the best solution computed by the proposed EA.

GAPBAB =
bestEA−bestBAB

bestBAB
GAPLB =

bestEA−bestLB

bestLB
(5)

Table 1 presents the experimental results obtained by the proposed EA, and a
comparison with BAB and LB regarding both the quality of solutions and the execution
time. Those cases where the proposed EA outperformed the BAB method, regarding
the cost of the best solution found or the execution time, are marked in bold.

The results in Table 1 show that the proposed EA is an accurate method to solve
the DPPM. It outperformed the BAB algorithm in 10 instances—regarding the solution
quality—, and it also computed similar results than BAB but requiring significant less
execution time in other 12 instances, especially when tight deadlines are imposed. A
maximum cost improvement of 4.7% over BAB was obtained for an instance with 128
activities. The comparison with LB indicates that the EA computed 21 optimal solutions
for the problem. Fig. 4(a) summarizes the improvements achieved by the proposed EA
over BAB, regarding the type of deadline constraints (loose, medium, and tight), and
Fig. 4(b) compares the average execution times of EA and BAB.

Fitness evolution and execution time. This subsection analyzes the fitness evolution
of the proposed EA and the trade-off between the solution quality and the required
execution time. Fig. 5 presents a representative case for the fitness evolution, showing
that despite starting from low-quality solutions, the EA is able to find well-suited
schedules in a very short time.

7 Conclusions and future work

This article presented an accurate and efficient EA to solve the DPPM, an important
problem in project management. The DPPM proposes to assign modes to activities in
order to provide a good tradeoff between duration and cost, enabling the best project
performance, while fulfilling deadline constraints on the total project duration.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 173

CI = 13

CNC N Θ EA BAB LB
avg tAV G σ best tBEST best tBAB GAPBAB best tLB GAPLB

5 85
0.15 13027.1 37.8 43.9 12951 39.8 12951 2094.7 0.0% 12951 1.9 0.0%
0.30 7859.9 29.6 45.3 7790 24.7 7790 158.7 0.0% 7790 0.4 0.0%
0.45 5134.9 23.2 65.5 5064 25.0 5054 65.5 0.2% 5054 0.5 0.2%

6 102
0.15 15538.4 124.5 55.3 15440 128.4 15555 3600.0 -0.7% 15440 87.8 0.0%
0.30 10615.6 88.1 58.2 10445 91.8 10547 3600.0 -1.0% 10326 190.0 1.2%
0.45 6076.7 68.2 32.6 6024 66.7 6010 294.9 0.2% 6010 3.3 0.2%

7 117
0.15 27641.0 222.0 28.0 27603 229.6 27693 3600.0 -0.3% 27526 2305.2 0.3%
0.30 17620.2 134.0 75.4 17537 134.3 17537 3600.0 0.0% 17537 112.1 0.0%
0.45 11542.7 75.0 92.6 11422 102.2 11389 3600.0 0.3% 11308 2.0 1.0%

7 119
0.15 23941.5 251.7 20.0 23895 247.2 24406 3600.0 -2.1% 23895 3601.4 0.0%
0.30 14542.9 170.9 42.2 14465 208.6 14425 3600.0 0.3% 14425 32.4 0.3%
0.45 8769.7 69.1 67.4 8701 103.1 8625 398.9 0.9% 8625 1.4 0.9%

8 128
0.15 22031.1 430.1 173.8 21663 399.7 22125 3600.1 -2.1% 21603 260.3 0.3%
0.30 13046.2 301.0 206.1 12735 309.7 13357 3600.0 -4.7% 12696 14.2 0.3%
0.45 7507.2 135.4 25.7 7428 165.1 7428 210.4 0.0% 7428 0.6 0.0%

8 129
0.15 17149.6 247.4 89.1 17005 308.8 17118 3600.0 -0.7% 17005 11.2 0.0%
0.30 11081.3 137.2 6.6 11077 197.4 11077 950.6 0.0% 11077 5.8 0.0%
0.45 7108.8 133.9 29.5 7092 87.6 7092 48.8 0.0% 7092 0.3 0.0%

CI = 14

CNC N Θ EA BAB LB
avg tAV G σ best tBEST best tBAB GAPBAB best tLB GAPLB

5 85
0.15 13204.3 32.2 60.6 13057 29.8 13057 247.0 0.0% 13057 0.3 0.0%
0.30 8553.5 23.5 46.3 8504 25.5 8481 157.6 0.3% 8481 0.2 0.3%
0.45 5670.3 19.8 63.1 5573 19.1 5573 10.4 0.0% 5573 0.1 0.0%

6 102
0.15 19085.5 78.7 95.5 18948 89.3 18948 238.7 0.0% 18948 0.9 0.0%
0.30 12820.5 65.8 275.0 12558 69.5 12558 82.4 0.0% 12558 0.5 0.0%
0.45 7676.4 46.3 23.9 7610 35.4 7610 9.5 0.0% 7610 0.1 0.0%

7 116
0.15 19794.2 152.8 137.9 19585 169.9 19585 1891.3 0.0% 19585 9.7 0.0%
0.30 11218.4 148.9 50.5 11123 141.0 11123 127.6 0.0% 11123 0.7 0.0%
0.45 7429.3 43.3 56.3 7364 35.4 7364 57.6 0.0% 7364 0.3 0.0%

7 119
0.15 9764.7 276.9 24.4 9693 249.8 9736 3600.1 -0.4% 9693 482.0 0.0%
0.30 5943.0 182.3 24.1 5886 169.0 5886 3600.0 0.0% 5884 13.5 0.0%
0.45 3879.9 111.9 13.3 3841 117.4 3834 3.6 0.2% 3834 0.3 0.2%

8 128
0.15 8113.5 283.2 21.0 8082 252.9 8082 3600.1 0.0% 8082 92.3 0.0%
0.30 5377.8 255.8 23.3 5286 273.4 5326 3600.0 -0.8% 5263 11.3 0.4%
0.45 3643.0 125.5 9.1 3604 123.2 3575 160.7 0.8% 3575 0.5 0.8%

8 129
0.15 18858.6 170.7 81.6 18697 247.0 18794 3600.0 -0.5% 18642 96.3 0.3%
0.30 11893.6 155.3 33.8 11819 176.4 11808 1014.1 0.1% 11808 3.6 0.1%
0.45 7914.1 141.5 55.9 7850 138.8 7850 237.5 0.0% 7850 0.8 0.0%

Table 1. Experimental results of the proposed EA for the DPPM.

The proposed EA was designed to provide accurate solutions, by using operators
that allow realistic problem instances to be solved in reduced execution times. Ad-hoc
recombination, mutation, and local search operators have been specifically proposed to
achieve this goal. In addition, a feasibility check/repair method is incorporated in order
to assure that the tentative solutions meet the deadline constraints.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 174

(a) Solution quality. (b) Execution time.

Fig. 4. Comparison between the proposed EA and BAB.

Fig. 5. Representative case for the fitness evolution of the proposed EA.

The experimental evaluation of the proposed EA was performed on a set of 36
complex benchmark instances from [1], regarding standard metrics for complexity. A
comparative study against the BAB algorithm [9], one of the best well-known determin-
istic techniques for the problem, was performed. The numerical results demonstrated
that the proposed EA is able to outperform BAB in terms of both quality of solutions
and computational efficiency, especially when solving instances with tight deadlines.

The proposed EA was able to find 10 new best-known solutions for the benchmark
instances solved, obtaining cost improvement of up to 4.7% over BAB. The EA also
computed similar results than BAB but requiring significant less execution time in other
12 instances. The comparison with LB indicates that the EA was able to compute 21
optimal solutions out of the 36 problem instances tackled.

The previous results indicate that the proposed EA is an accurate and efficient
method to solve the DPPM, especially when dealing with tight deadlines.

The main lines for future work are related with improving the evolutionary search
and the computational efficiency of the proposed EA. New evolutionary operators can
be designed to improve the results quality. In addition, parallel models of the proposed
EAs can be applied in order to further improve the efficiency of the method.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 175

Bibliography

[1] C. Akkan, A. Drexl, and A. Kimms. Network decomposition based benchmark
results for the discrete time-cost tradeoff problem. European Journal of
Operational Research, 165:339–358, 2005.

[2] K. Anagnostopoulos and L. Kotsikas. Experimental evaluation of simulated
annealing algorithms for the timecost trade-off problem. Applied Mathematics
and Computation, 217(1):260–270, 2010.

[3] T. Bäck, D. Fogel, and Z. Michalewicz, editors. Handbook of evolutionary
computation. Oxford University Press, 1997.

[4] V. Deineko and G. Woeginger. Hardness of approximation of the discrete time-
cost tradeoff problem. Operations Research Letters, 29:207–210, 2001.

[5] E. Demeulemeester, B. Reyck, B. Foubert, W. Herroelen, and M. Vanhoucke.
New computational results on the discrete time/cost trade-off problem in project
networks. Operations Research Letters, 49:1153–1163, 1998.

[6] E. Dunne, J. Ghosh, and C. Wells. Complexity of the discrete timecost tradeoff
problem for project networks. Operations Research, 45:302306, 1997.

[7] E. Fallah-Mehdipour, O. Bozorg, M. Rezapour, and M. Mario. Extraction
of decision alternatives in construction management projects: application and
adaptation of NSGA-II and MOPSO. Expert Systems with Applications,
39(3):2794–2803, 2012.

[8] M. Garey and D. Johnson. Computers and intractability. Freeman, 1979.
[9] B. Hafizoglu and M. Azizoglu. Linear programming based approaches for

the discrete time/cost trade-off problem in project networks. Journal of the
Operational Research Society, 61(4):676–685, 2010.

[10] O. Hazir, M. Haouari, and E. Erel. Discrete time/cost trade-off problem: A
decomposition-based solution algorithm for the budget version. Computers and
Operations Research, 37(4):649–655, 2010.

[11] J. Nicholas and H. Steyn. Project Management for Engineering, Business, and
Technology. Routledge, 2011.

[12] M. Wall. GAlib: A C++ library of genetic algorithm components. Mechanical
Engineering Department, Massachusetts Institute of Technology, 1996.

[13] J. Zhang and H. Shan. Multi-resource constrained discrete time/cost trade-off
problem and its improved genetic algorithm. In International Conference on
Management Science and Engineering, pages 123–128, 2010.

Acknowledgments

The work of S. Nesmachnow has been partially supported by PEDECIBA and ANII, Uruguay.
The authors would like to thank Baykal Hafizoglu for providing the problem instances used in
the experimental analysis.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 176

	Algorithm 1 Schema of an evolutionary algorithm:
	CI 13:

