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Abstract. All the algorithms for ICA require high-order statistics to es-
timate the independent components. This is because second-order infor-
mation is insufficient to assess that two random variables are independent
of each other. It is known that the robustness of the high-order sample
estimators is poor, meaning that a few outliers can change dramatically
its value. In this paper, we generalize the alternative robust statistics
for moments and cumulants introduced by Welling [1] presenting the
MMSE-robust moments. Then we present a batch and adaptive versions
of an algorithm for estimating the parameters that define the estimator.
Finally, we modify two FastICA algorithms of ICA based on kurtosis and
negentropy to apply the MMSE robust estimators and show some exper-
iments with supergaussian sources to demonstrate the improvement.

1 Introduction

Simple statistics such as moments and cumulants have been used extensively to
model data. The problem with the classical sample estimators for moments is
that a few outliers can change the estimation completely, with the issue becom-
ing more important as the order of the statistic increases. Since cumulants are
functions of moments up to the same order, they also suffer from high sensitivity
to outliers. For supergaussian distributions, that are peaky and heavy tailed, the
problem is of particular importance.

Thus, it is important to be able to find more stable ways to estimate these
statistics.

The paper is divided as follows. Section 2 presents a short review of the
classical definitions of moments and cumulants for a random variable. Then we
generalize these definitions to introduce what we call robust-MMSE moments
and two algorithms are stated for the estimation of its parameters. Afterwards,
in section 3 a review of the ICA model is presented with the conditions that
need to be satisfied in order to make the estimation possible. Followed by that,
in sections 4 and 5 the two usual criteria for nongaussianity maximization are
presented. Finally, we present a few simple experiments in section 6 and the
conclusions of the work in section 7.
? This work was partially supported by the University of Buenos Aires, CONICET
and ANPCyT.
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2 Classical Moments and Robust-MMSE Moments
Definitions

Recall that for a random variable X the moments µn are defined by µn =
E[Xn] and the cumulants κn by the Maclaurin series expansion of the second
characteristic function ψX(ω) which is the logarithm of the first characteristic
function φX(ω) [2]

ψX(ω) = log (φX(ω)) =
∞∑
n=0

1

n!
κn(iω)

n. (1)

The idea of Welling [1] is to introduce an isotropic decay exponential factor
which downweights outliers. This in turn implies preference for some location and
scale so that it is necessary to assume the following fact: the random variable is
zero-mean and unit-variance. In the ICA problem this is equivalent to assume
that the data has already been sphered which is a typical preprocessing step.

We will generalize the exponential factor by replacing it by an arbitrary
function that controls the robustness of the estimator. In addition, we add two
parameters to minimize its MSE as follows

Definition 1. The robust-MMSE moments are given by

µ(αn,βn,gn(.))
n = E[αnXngn(X) + βn], (2)

where αn and βn are chosen as the parameters that minimize the mean square
error between αnXngn(X) + βn and Xn, while gn(.) controls its robustness.

Clearly, with this definition, there is no need to assume that X is zero-mean and
unit variance because gn(.) is arbitrary. In this section, we relax this condition.

Thus, our generalization consists of taking some robust estimator and then
apply to it an affine transformation that yields in theory minimum MSE.

Note that the classical moments can be recovered from this definition by
µ
(1,0,gn(.)=1)
n = µn which is useful as a limit case that can still be used, for

example, for random variables whose density is known to have finite support.
Alternatively, for a random variable with a very heavy tailed distribution or in a
situation where there are a considerable proportion of outliers we should use an
appropiate decaying function in order to attenuate their effect. The advantage of
this definition is that it allows to use different functions for different situations
and different orders of the moment to be estimated.

Lets now obtain an algorithm to estimate αn and βn. In the following deriva-
tion we assume that the function gn(.) is fixed and known. Actually, as we
mentioned, it controls the robustness of the estimator and should be chosen or
estimated from the samples with some appropiate criterion. In section 6 we will
present two alternatives. The MSE can be calculated as follows

MSE(αn, βn) = E[(αnXngn(X) + βn −Xn)
2
]. (3)
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Then,

MSE(αn, βn) = E[(Xn(αngn(X)− 1) + βn)
2
]

= α2
nE
[
X2ng2n(X)

]
+ β2

n + 2αnβnE[Xngn(X)]

− 2αnE
[
X2ngn(X)

]
− 2βnE[Xn] + E

[
X2n

]
. (4)

Now, to minimize this function with respect to αn and βn we take the partial
derivatives and set them equal to zero which yields,

∂MSE(αn, βn)

∂αn

∣∣∣∣
αn=α

opt
n

= 2αnE
[
X2ng2n(X)

]
+ 2βnE[Xngn(X)]

− 2E
[
X2ngn(X)

]∣∣∣∣
αn=α

opt
n

= 0, (5)

∂MSE(αn, βn)

∂βn

∣∣∣∣
βn=β

opt
n

= 2βn + 2αnE[Xngn(X)]− 2E[Xn]

∣∣∣∣
βn=β

opt
n

= 0. (6)

From these equations we find

αoptn =
µ
(1,0,gn(.))
2n − µnµ(1,0,gn(.))

n

µ
(1,0,g2n(.))
2n −

(
µ
(1,0,gn(.))
n

)2 , (7)

βoptn = µn − αoptn µ(1,0,gn(.))
n . (8)

Note that these equations show that the estimator of µn by the robust-

MMSE moment µ(
αopt

n ,βopt
n ,gn(.))

n is unbiased and, therefore, a minimum variance
unbiased estimator.

These solutions depend on both the unknown moments µn and the expec-
tations E[Xngn(X)] , E

[
X2ngn(X)

]
and E

[
X2ng2n(X)

]
. We propose a simple

approximation where the first quantity is replaced by the sample estimation of
α
(0)
n E[Xngn(X)]+β

(0)
n , where α(0)

n and β(0)
n are some initial parameters, and the

others by its sample estimation. Note that since the function gn(.) is chosen to
ensure robustness this approximation is reasonable.

Algorithm 1. Batch estimation of the values of αoptn and βoptn .

1. Find the sample estimators µ̂(1,0,gn(.))
n , µ̂(1,0,gn(.))

2n and µ̂(1,0,g2n(.))
2n .

2. Choose some initial values for the parameters α(0)
n and β(0)

n (e.g. α(0)
n = 1

and β(0)
n = 0).
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3. Estimate the parameters by

α̂optn =
µ̂
(1,0,gn(.))
2n − µ̂(α0

n,β
0
n,gn(.))

n µ̂
(1,0,gn(.))
n

µ̂
(1,0,g2n(.))
2n −

(
µ̂
(1,0,gn(.))
n

)2 , (9)

β̂optn = µ̂
(α0

n,β
0
n,gn(.))

n − α̂optn µ̂(1,0,gn(.))
n . (10)

This is a one-step batch algorithm. One evident issue is that the initial val-
ues for the parameters have an important influence in the final solutions. One
possible solution is to run in parallel many algorithms with different initial con-
ditions. It is also possible, and more interesting, to elaborate an online version
of the algorithm as follows.

Algorithm 2. Adaptive estimation of the values of αoptn and βoptn .

1. Choose any values for the initial estimates of the parameters α̂(0)
n and β̂(0)

n .
2. When the first K samples1, e.g. K = 100, are available, set p := K and do

the following assignments:

µ̂(1,0,gn(.)),(p)
n =

K∑
j=1

xnj gn(xj), (11)

and similarly for µ̂(1,0,gn(.)),(p)
2n and µ̂(1,0,g2n(.)),(p)

2n

Then, estimate the optimal parameters by

α̂(p)
n =

µ̂
(1,0,gn(.)),(p)
2n − µ̂(αp−1

n ,βp−1
n ,gn(.)),(p)

n µ̂
(1,0,gn(.)),(p)
n

µ̂
(1,0,g2n(.)),(p)
2n −

(
µ̂
(1,0,gn(.)),(p)
n

)2 , (12)

β̂(p)
n = µ̂

(αp−1
n ,βp−1

n ,gn(.)),(p)
n − α̂(p)

n µ̂(1,0,gn(.)),(p)
n . (13)

3. For every new sample, say xp+1, set p := p + 1 and update the estimations
by

µ̂(1,0,gn(.)),(p)
n =

p− 1

p
µ̂(1,0,gn(.)),(p−1)
n +

1

p
xnpgn(xp), (14)

µ̂
(1,0,gn(.)),(p)
2n =

p− 1

p
µ̂
(1,0,gn(.)),(p−1)
2n +

1

p
x2np gn(xp), (15)

µ̂
(1,0,g2n(.)),(p)
2n =

p− 1

p
µ̂
(1,0,g2n(.)),(p−1)
2n +

1

p
x2np g

2
n(xp), (16)

Then, reestimate the optimal parameters by (12) and (13) .

1 We cannot initialize the estimation of the parameters with one sample, see the de-
nominator of (7)
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It can be seen immediately that this online algorithm has a constant compu-
tational cost per iteration. Moreover, it is still useful for a nonstationary envi-
ronment since the adaptive approach allows the tracking of the statistics. These
are two extremely desirable properties in practice.

It is easy to perform an analysis of the convergence of the algorithm for the
case of stationary environments. Since this is a stochastic on-line algorithm, the
analysis will be based on the averaged differential equations of the update rules
[3]. For example, for the equation (14), we obtain

dµ̂
(1,0,gn(.))
n

dt
=
−µ̂(1,0,gn(.))

n + E[Xngn(X)]

t
(17)

The fixed point of this equation is µ̂(1,0,gn(.))
n = E[Xngn(X)]. The analysis

is exactly the same for the other update rules of the robust moments. This
guarantees the stability of α̂n but, unfortunately, not much can be said about
β̂n.

Now that we can estimate moments and cumulants in a robust, fast and
presumably accurate way, we will apply them to the estimation of ICs.

3 Independent Component Analysis

The ICA instantaneous noiseless model assumes that the data vector X ∈ RM is
a linear mixture of some latent (unobserved) vector S ∈ RN whose components
are independent random variables

X = AS. (18)

There are some restrictions that are needed to guarantee identifiability (i.e.
that it is possible to estimate the ICs up to some trivial indeterminacies). Basi-
cally, we need to impose that [4,5] :

1. The independent components Sj are statistically independent and no more
than one of them is Gaussian.

2. For simplicity, the unknown matrix is assumed to be square (i.e. M = N).

The first condition is the fundamental hypothesis of ICA. On the other hand,
the second condition can be relaxed in some cases [6]. Note that since we assume
that the unknown matrix is square, we can also assume that it is invertible if
we consider that redundant mixtures are discarded. Then, after estimating the
mixing matrix A, the ICs can be obtained simply by

S = A−1X. (19)

This means that we can use linear estimators on X for the independent compo-
nents. Specifically,

Ŝj = wT
j X, (20)
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where wj must be found by maximization of an independence measure between
all the estimates [7]. One possible method to solve the problem is to seek the
wj as the directions that maximize locally nongaussianity, a measure motivated
intuitively by the central limit theorem. Typically, this is done by kurtosis or
negentropy approximations [7].

4 Robust Kurtosis Algorithms

Kurtosis for a zero-mean unit-variance random variable is simply given by

κ4 = µ4 − 3. (21)

For Gaussian random variables the kurtosis is zero, but the converse is not
true. Kurtosis can be either positive or negative corresponding to supergaussian
and subgaussian distributions, respectively. Thus, for measuring nongaussianity
the absolute value of kurtosis could be taken. For whitened data Z, the condition
on zero-mean and unit-variance gives the following constraint for the weight
vectors

E
[
wT
j ZZ

Twj

]
= ‖wj‖22 = 1 ∀j ∈ {1, . . . ,M}. (22)

Thus, the problem for finding one IC can be formulated as

ŵ =argmax
w

J(w) = argmax
w

|κ4(wTZ)|

=argmax
w

|E
[
(wTZ)4

]
− 3E

[
(wTZ)2

]
|

s.t.‖w‖22 = 1. (23)

The problem can be solved with a fixed-point iteration algorithm that has the
advantages of avoiding the necessity of selecting a learning-rate sequence and
gives faster convergence [6]. Using the method of Lagrange multipliers it is easily
seen that at a stable point of the algorithm, the gradient must point in the
direction of w. So the fixed-point algorithm obtained is:

w := E
[
Z(wTZ)3

]
− 3w, (24)

w :=
w

‖w‖2
. (25)

The final vector gives one of the ICs as the projection of the data in its
direction. This algorithm is called FastICA. It can be shown that the convergence
of this algorithm is cubic [6]. Moreover, there are no adjustable parameters, which
makes it easier to use than gradient ascent, and more reliable.

For the estimation of more than one IC, we first note the following important
fact: the directions of the ICs are orthogonal when the data is sphered. This can
be seen by direct calculation. In fact, suppose we have found the directions for
two ICs wi and wj . Then
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E
[
wT
i ZZ

Twj

]
= wT

i wj = 0. (26)

So the key to obtain the different ICs is to search in the orthogonal space
of the already found independent directions. This can be made by deflationary
orthogonalization using the Gram-Schimidt method or by a symmetric orthogo-
nalization in which the directions of the independent components are estimated
in parallel [6]. The latter option is very advanteagous in practice, being its more
remarkable benefits: i) there is no accumulation of round-off errors; ii)parallel
computations can be made making possible to take advantage of any parallel
architecture, so the algorithm converges much faster.

The symmetric orthogonalization ofW can be achieved by the classic method
involving matrix square roots

W := (WW T )−1/2W . (27)

which yields obviously an orthogonal matrix. Then the algorithm takes the fol-
lowing form

Algorithm 3. Symmetric orthogonalization algorithm:

1. Choose M , the number of ICs to estimate and the tolerances for the weight
vectors ε.

2. Initialize wi, i = 1, . . . ,M (e.g. randomly) with unit 2-norm.
3. Do an iteration of the fixed-point algorithm on every wi in parallel.
4. Do a symmetric orthogonalization of the matrix W = (w1, . . . ,wM ) by

using equation (27).
5. If the 2-norm of all the weight vectors has changed less than ε, end. Other-

wise, go back to step 3.

The proposed robust algorithm is obtained by using FastICA with symmetric
orthogonalization and replacing moments by the estimators presented in section
2.

5 Robust Negentropy Algorithms

The second measure of nongaussianity that we will consider is negentropy. This
quantity is closely related to the information-theoretic concept of differential
entropy [8]. The entropy of a random variable is related to the information that
the observation of the variable gives. The more unpredictable the variable is, the
larger its entropy. The entropy H of a random vector X ∈ RM is defined as

H(X) = E [− log(pX(X))] = −
∫
RM

pX(x) log(pX(x))dx. (28)
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A fundamental result of information theory is that a Gaussian variable has
the largest entropy among all random variables of equal means and variances [8].
This is why this quantity can be used as a measure for nongaussianity.

Negentropy for a random vector X is now defined by

J(X) = H(XG)−H(X), (29)

where XG is a Gaussian random vector with the same mean and covariance
matrix of X. Note that this measure is zero only for a Gaussian variable and
always nonnegative because of the property just mentioned. Maximization of
negentropy is equivalent to minimization of entropy so that the problem is to find
the directions of locally minimum entropy that corresponds to the ICs. Another
advantage is that negentropy is well justified as a measure for nongaussinity by
statistical theory, being optimal in some sense [6].

Observe that to calculate exactly the quantity we should know the probability
density function of the variable under consideration, which is not the case here.
We will then use some approximations for the evaluation of this quantity.

The classic method of approximating negentropy is based on an expansion
of the pdf in the vicinity of a Gaussian density using high-order cumulants.
Commonly the Gram-Charlier and the Edgeworth expansions are used. They
lead to very similar approximations, but the Edgeworth expansion is preferred
because it is a true asymptotic expansion [9]. Using a Edgeworth expansion one
can find the following approximation for negentropy of a random variable X [4]

J(X) ≈ 1

12
κ3(X)2 +

1

48
κ4(X)2 +

7

48
κ3(X)4 − 1

8
κ3(X)2κ4(X). (30)

Clearly, when the density is symmetric, this approximation reduces to the
same criterion as the maximization of kurtosis. In the other case, there is more
information present in the negentropy approximation.

So we have to solve the following optimization problem

ŵ =argmax
w

J(w)

= argmax
w

1

12
κ3(w

TZ)2 +
1

48
κ4(w

TZ)2 +
7

48
κ3(w

TZ)4 − 1

8
κ3(w

TZ)2κ4(w
TZ)

s.t.‖w‖22 = 1. (31)

In this case, the fixed-point algorithm is

w =E
[
Z(wTZ)2

]
{1
2
E
[
(wTZ)3

]
+

7

4
E
[
(wTZ)3

]3 − 3

4

(
E
[
(wTZ)4

]
− 3
)2}+

+E
[
Z(wTZ)3

]
{1
6

(
E
[
(wTZ)4

]
− 3
)
− E

[
(wTZ)3

]2} (32)

w :=
w

‖w‖2
(33)

For estimating various ICs we can use this update rule in the Algorithm 2.
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6 Experiments

We focus the experiments in testing the performance of the proposed robust-
MMSE estimators for two different attenuation functions, shown in figure 1, and
also to evaluate algorithms 1 and 2. For the simulations, we consider first an
exponential distribution with λ = 1

4 which is centered and scaled as a prepro-
cessing step for simplicity. Nevertheless its ordinariness, this is a supergaussian
asymmetric distribution which is useful to illustrate some results. We will use a
set of 10,000 samples and add a 5% of outliers represented by samples of a nor-
mal distribution with mean 30 and unit variance. Then, we repeat the procedure
with a less typical distribution, known as the hyperbolic secant distribution.

The results obtained for both algorithms are similar in the stationary case,
but the first one depends stronger on the initial condition, as expected. They
are shown for the exponential random variable in tables 1 and 2 and for the
hyperbolic secant random variable in tables 3 and 4. The attenuation functions
used seem to be fairly good choices.

Fig. 1. Plot of g1n(x) = 1
1+x2n/102n

and g2n(x) = e(
−|x|n
n10n

) for different values of n

In the simulation process, a lot of observations were made, being the more
important ones,

1. The upgrade of the robust moments is remarkable even with high proportions
of outliers.

2. The algorithm seems to work well for αn but becomes sensible in its value for
large n. Also, βn is a parameter that varies a lot and becomes huge for large
n in order to compensate for small errors in αn. In the future, we propose
to use regularization to solve this problem.
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Table 1. Robust moment estimation of the exponential random variable using the
attenuation family function g1n(.)

n Sample moment Robust moment Theoretical moment αn βn
1 1.4295E+00 1.3100E-01 0.0000E+00 4.0961E+00 -4.0540E-01
2 4.4016E+01 1.4580E+00 1.0000E+00 4.4952E+01 -6.4083E+01
3 1.2895E+03 3.6993E+00 2.0000E+00 1.8867E+02 -6.9424E+02
4 3.8711E+04 1.5160E+01 9.0000E+00 4.4814E+02 -6.7787E+03
5 1.1648E+06 5.7812E+01 4.4000E+01 1.5015E+03 -8.6750E+04
6 3.5298E+07 2.8999E+02 2.6500E+02 2.4890E+03 -7.2148E+05
7 1.0416E+09 1.6605E+03 1.8540E+03 1.7037E+03 -2.8274E+06
8 3.2477E+10 9.3930E+03 1.4833E+04 4.7129E+03 -4.4259E+07
9 9.6471E+11 8.8853E+04 1.3350E+05 1.7484E+03 -1.5526E+08

10 2.9468E+13 1.7152E+05 1.3350E+06 5.5020E+04 -9.4371E+09

Table 2. Robust moment estimation of the exponential random variable using the
attenuation family function g2n(.)

n Sample moment Robust moment Theoretical moment αn βn
1 1.4290E+00 3.4700E-02 0.0000E+00 4.0033E+00 -1.0420E-01
2 4.3766E+01 1.4279E+00 1.0000E+00 4.0842E+01 -5.6890E+01
3 1.2910E+03 2.1702E+00 2.0000E+00 2.6098E+01 -5.4467E+01
4 3.8767E+04 7.9262E+00 9.0000E+00 1.2159E+00 -1.7112E+00
5 1.1801E+06 2.8460E+01 4.4000E+01 1.0149E+00 -4.2270E-01
6 3.5518E+07 2.6086E+02 2.6500E+02 1.0860E+00 -2.2430E+01
7 1.0617E+09 1.6529E+03 1.8540E+03 1.0977E+00 -1.6145E+02
8 3.1863E+10 7.9707E+03 1.4833E+04 1.0248E+00 -1.9783E+02
9 9.6192E+11 1.6126E+05 1.3350E+05 1.2196E+00 -3.5406E+04

10 3.0349E+13 1.7427E+05 1.3350E+06 1.0022E+00 -3.8394E+02

Table 3. Robust moment estimation of the hyperbolic secant random variable using
the attenuation family function g1n(.)

n Sample moment Robust moment Theoretical moment αn βn
1 1.4262E+00 1.4210E-01 0.0000E+00 4.0281E+00 -4.3040E-01
2 4.3805E+01 1.4652E+00 1.0000E+00 5.8375E+01 -8.4064E+01
3 1.2925E+03 1.8837E+00 0.0000E+00 3.7519E+02 -7.0486E+02
4 3.9502E+04 1.1598E+01 5.0000E+00 8.3657E+02 -9.6913E+03
5 1.1749E+06 2.0333E+01 0.0000E+00 2.5753E+04 -5.2360E+05
6 3.5310E+07 1.2032E+02 6.1000E+01 6.9756E+04 -8.3928E+06
7 1.0724E+09 2.6559E+02 0.0000E+00 1.4129E+05 -3.7526E+07
8 3.2385E+10 1.6493E+03 1.3850E+03 1.2864E+06 -2.1215E+09
9 9.7888E+11 -1.0190E+03 0.0000E+00 7.5774E+05 7.7217E+08

10 2.9472E+13 2.5630E+04 5.0521E+04 2.8333E+07 -7.2617E+11
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Table 4. Robust moment estimation of the hyperbolic secant random variable using
the attenuation family function g2n(.)

n Sample moment Robust moment Theoretical moment αn βn
1 1.4196E+00 6.7800E-02 0.0000E+00 3.8272E+00 -1.9180E-01
2 4.3921E+01 1.4295E+00 1.0000E+00 5.5706E+01 -7.8204E+01
3 1.2926E+03 1.9080E-01 0.0000E+00 9.0536E+01 -1.7083E+01
4 3.8999E+04 4.7579E+00 5.0000E+00 1.4074E+00 -1.9385E+00
5 1.1761E+06 -3.0550E+00 0.0000E+00 1.0200E+00 6.1100E-02
6 3.5395E+07 5.0635E+01 6.1000E+01 1.0076E+00 -3.8530E-01
7 1.0655E+09 2.4461E+01 0.0000E+00 1.0022E+00 -5.4800E-02
8 3.2047E+10 1.3779E+03 1.3850E+03 1.0030E+00 -4.0701E+00
9 9.7465E+11 5.0088E+03 0.0000E+00 1.0042E+00 -2.1035E+01

10 2.9301E+13 8.9630E+03 5.0521E+04 1.0001E+00 -7.2969E-01

3. In many cases the final value of the estimation of αn is close to one, so that
may be a good choice for its initial condition.

4. The Gaussian function is not a good choice for gn(.) since it is not flat at all
near the origin as the functions in figure 1.

5. The moments can be efficiently estimated up to high orders in this way,
showing that there is a severe attenuation of the effect of the outliers.

7 Conclusions

Estimation of high-order statistics is a difficult problem that arises in many situ-
ations. In particular, in the ICA problem, as the algorithms need this information
to separate the sources. In this paper, we have defined robust-MMSE moments
to deal with this problem and presented two families of attenuation functions
that can be useful for this purpose, especially when dealing with supergaussian
random variables and in the presence of outliers. We then stated two algorithms
to estimate the parameters that define the robust-MMSE moments. The first
is a one-step batch algorithm, while the second is a more versatile adaptive
algorithm. As we have seen, the results seem promising.

In the future, we will continue to study some approximations to independence
measures where one can use higher-order statistics to test the robust-MMSE ap-
proximations defined herein. Then, it would be possible to use more information
to separate the sources and thus it is expected that this would be done in a more
reliable way.
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