
Improving Software Engineering Teaching by Introducing Agile

Management

Álvaro Soria Marcelo R. Campo* Guillermo Rodríguez*

ISISTAN Research Institute, UNICEN University
Campus Universitario, (B7001BBO) Tandil, Buenos Aires, Argentina.

*Also CONICET-Argentina

{asoria, mcampo, grodri }@exa.unicen.edu.ar

Abstract. One of the main goals of Software Engineering (SE) courses is to train students

to face problems that occur in professional contexts. Thus, software engineering courses

have to be continuously reoriented to cater for the demands of the software industry

without neglecting academic quality. The widespread use of Scrum, an agile approach to

software development, provides SE professors with a suitable option for teaching students

good practices of current software development. In the present paper, we introduce a

teaching model based on a combination of Scrum and Agile Coaching. This innovative

model, which has been contrasted with RUP (Rational Unified Process) and assessed,

using CMMI (Capability Maturity Model Integration) as a reference, is a result of an

evolutionary process in which several improvements were conducted during the academic

period 2008/10. Results show that this agile approach allows students to develop software

achieving high levels of CMMI maturity.

Keywords: Software Engineering Education, Scrum, CMMI, Agile Coaching.

1. Introduction

In recent years, software industries have grown rapidly and they are demanding for skilled

software engineers in a challenging context in which the increasing complexity of software

development, constant changes in system requirements, and mobility of developers take place.

Thus, showing students good practices of software development is crucial, so that they are

capable of ongoing success in the software engineering field.

As a consequence, professors have to design Software Engineering (SE) courses including

several aspects to teach students how to deal with current threats present in large software

projects [1]. To do so, we structured a Software Engineering course following CMMI [16]. We

utilized CMMI for development version 1.3 (CMMI-DEV 1.3)
1
 that is focused on product and

service development. CMMI is a framework that covers a set of practices to implement mature

and high-quality software development processes. Our initial implementation of CMMI

consisted in following the Rational Unified Process (RUP) [15] to support the project software

processes. To run a software project, we asked students to follow RUP for achieving the good

practices proposed by CMMI.

However, teaching SE to students running a software project following RUP suffers from

several drawbacks. As it is a plan-driven development framework, RUP requires the association

1
 CMMI for Development version 1.3. Technical Report. Software Engineering Institute, Carnegie

Mellon. November, 2010. http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 215

mailto:mcampo,%20grodri%20%7d@exa.unicen.edu.ar
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

of project milestones with specific dates. This makes students focus on reaching deadlines and

delivering the agreed milestone, skipping activities of the RUP workflow. In addition, even

though RUP encourages the overlapping of phases, it is inevitably for students to fall in a

waterfall-like process [24]. Thus, it is difficult for the inexperienced students to detect mistakes

made in early stages before the development process reaches last stages. Finally, as in the

planning of the scope and the project milestones some students do not take part in; it provokes a

lack of commitment in the rest of them. Since SE is a social activity, these aspects are

cornerstone of its reality and crucial to professional education and training.

To tackle these problems in an academic environment, Agile Methods (AM) emerge as a

much more viable way to implement the main CMMI practices with RUP. AM promote a

highly iterative work model with the aim to produce high-quality software and allow quick

adaptation to changing requirements [11]. A typical concern among software development

companies is the need for strategies which help them to be well positioned in the software

market. For this reason, the combination between agile approaches and CMMI seems to be a

suitable alternative to develop mature software in a challenging context. Agile values ensure

success and quality, making AM ideal partners of CMMI. As a result, companies are able to

deliver a high-quality product following a mature process in continuous improvement and

optimization [8, 9, 12].

Agile software development has received significant academic attention because of its

widespread application in the commercial world [5, 6, 7, 10, 14, 19]. Out of the various agile

approaches, Scrum has gained wide acceptance because it concentrates on managing software

projects and includes monitoring and feedback activities [3, 19]. These features allow students

to acquire skills beyond technical and scientific scenarios, such as teamwork-related abilities. In

an educational context, these aspects are welcome because they enable students to get acquainted

with agile methods and, at the same time, provide mechanisms for evaluating individual agile

concepts.

Along this line, this paper presents a teaching model based on agile practices in a CMMI

context. The aim of the model is to maximize the strengths of both discipline and agility to

improve software engineering teaching. Two main aspects have been considered to implement

AM in a teaching context: the agile process and the Agile Coach. Here, the agile process is

supported by Scrum and the Agile Coach role is played by the professor, who is responsible for

coaching the teams. During the academic years 2008, 2009 and 2010, we implemented this

teaching model in the Software Engineering course of the UNICEN University. In order to

measure its effectiveness, we assessed the impact of the performance of students on the

coverage level of the CMMI practices. The results have shown that a balance among Scrum, the

Agile Coach role and CMMI is more appealing to students so that they can obtain a higher

coverage of CMMI practices than when using CMMI with RUP.

 The remainder of the paper is organized as follows. Section 2 describes the foundations of

our approach. Section 3 presents our agile-based teaching model. Section 4 reports the case-

studies and outlines the most important lessons learned and limitations of following the

teaching model. Section 5 reviews some related works and section 6 concludes this research and

indentifies future lines of work.

2. Background

CMMI is a framework which consists of a set of best practices that address the development

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 216

and maintenance of products and services. These practices cover the product life cycle from

conception through delivery and maintenance [15]. CMMI refers to “what to do” rather than

“how to do it”. CMMI is organized in process areas. A process area is a group of related

activities performed collectively to achieve a set of goals. Some goals and practices are specific

to the process area; others are generic and apply across all process areas [15].

CMMI is often misunderstood [15] as being required massive documentation, many layers of

personnel and the use of a rigid waterfall life cycle. However, by following AM it is possible to

obtain maturity levels with less overhead and effort [2, 11]. That is, the use of a combination

between AM and CMMI results in benefits to the business performance by exploiting the

synergies of both approaches [8, 9]. The value from AM can only be obtained through

disciplined use. Most companies are adopting Scrum to become agile smoothly and reduce

overhead and bureaucracy progressively, without losing sight of the quality of the software

product [7] [18]. Scrum is an agile methodology that organizes projects into small, self-

organized and cross-functional teams, called Scrum Teams [30].
Work in Scrum is organized and prioritized according to the Product Backlog. This is the

master list of the desired features in the product. The backlog items are called user stories,

which are provided by a domain expert called Product Owner. A user story describes the

scenario in which a player wants to log into a virtual world. The user story describes a desired

functionality involving role (“As…”), product features (“…I want to…”) and the benefit

provided to the user (“…so that…”). A sample user story could be the following: “As a User,

when I log out the virtual world I want to save my interaction so that I could log in again and

be in the log-out place”.

The user stories in the Product Backlog are prioritized by the Product Owner, who represents

the customers’ interests, and grouped into short iterations called Sprints. For each sprint, a

subset of the user stories in the Product Backlog is selected and organized in a Sprint Backlog.

During the Sprint, the Scrum team takes user stories from the Sprint Backlog and develops and

tests them. These activities are coordinated by a management representative, called Scrum

Master, who enforces the Scrum practices and helps the team make decisions or acquire

resources as needed.

Anyhow, not all the aspects required in the agile world are tackled by Scrum. Figure 1 shows

Scrum in an agile context of a software organization. Beyond the scope of the Scrum team,

there are management responsibilities such as management of financial resources, business

decision-makings and management of the organization’s environment. For this reason, it is

necessary to include the role of an Agile Coach into a software organization. The main goal of

the Agile Coach is to enable the team to solve its own problems and come up with its own

insights of products [13]. For instance, the Agile Coach is in charge of coaching the team

members, enabling them to resolve their own problems, and assisting the Scrum Master in

removing organizational impediments.

 Regarding a teaching context, Scrum enables the students to have a better teamwork

environment and a better communication that results in high-quality products [7]. Along with

Scrum, the Agile Coach role is an important aspect that has to be incorporated in a SE course,

so that the professor can coach the students in order to help them face the diversity of facets of a

product development. Following this line, the next section presents a teaching model that

consists of the implementation of CMMI using Scrum complemented with the Agile Coach

role.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 217

Figure 1. Scrum in the agile world.

Scrum

Agile
Coach

Management

Scrum
Master

Product
Owner

Stake-
holders

Team
Members

Scrum
Activities

Scrum
Artifacts

Key:
interacts with

Business
decision-
makings

Financial
resources

Organization’s
environment

3. Agile-based teaching model

In the current curriculum of System Engineering studies at UNICEN University, Scrum has

been included into the Software Engineering course. Before attending this course, students

attend the Introduction to Software Engineering course in which students are also trained in

understanding the CMMI process areas, implementing these areas with Scrum, and using the

development environment. In addition, the professor complements the course with anecdotes

and previous experiences in companies in order to emphasize the pedagogical techniques.

Simultaneously, the software assets related to each process area are prepared to be used in the

next course, which this paper focuses on. An asset is an artifact that relates to describing,

implementing, and improving processes (e.g., polices, measurements, process descriptions,

documents, and process implementation support tools).

Figure 2 illustrates the teaching model used by the professor to run the course. Our teaching

approach is oriented to simulate a software organization. We assume that students have

acquired the required knowledge during the previous course. The students play the Scrum

Master and the Scrum Team roles, and are responsible for developing and testing the user

stories. As professors, we play two roles: Product Owner and Agile Coach simulating a realistic

environment [19]. The Product Owner owns the Product Backlog and helps the teams clarify

the user story’s specifications. Also, she is responsible for validating the final product. The

Agile Coach encourages the teams throughout the Scrum process by clearing the team’s

obstacles and emphasizing the use of tools to maintain the traceability of the user stories. It is

important to note that the students playing the role of Scrum Masters are evaluated in how well

they (a) protect the Scrum Team, (b) ensure that the Scrum process is followed in terms of

values, practices and rules, (c) remove impediments, and (d) bridge the gap between the Product

Owner and the Scrum Teams. Instead, the Agile Coach is not involved in the project and is a

transitional role until the Scrum Teams grow their own coaching capability. She acts a

consultant and a trainer in agile methods.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 218

The model consists of an iterative and incremental life cycle based on Scrum and Agile

Coaching. In the Initial Phase, which represents the Sprint 0, all the setup of the development

environment is carried out and the students checks that the workstations are working with all

the required features. On the other hand, the user stories are defined and loaded into the Product

Backlog. This artifact is supervised by the Product Owner, who prioritizes and negotiates the

user stories for the Sprint with the team according to risk levels and importance to the project.

The next phase is the Sprint Planning which consists in planning and estimating the work to

be done during a Sprint. Before the Sprint Backlog is defined, the estimates of user stories are

obtained in order to assure that sum o story points of all user stories in the Sprint Bakclog

corresponds to the velocity of the Scrum Teams. Each Scrum Team estimates the complexity of

the user stories by using the Planning Poker technique proposed by Cohn [4]. The estimates are

constrained to specific predefined values of 0.5, 1, 2, 3, 5, 8, 13, and 20. Once the Sprint

Backlog is defined, the selected user stories to be done in the Sprint are decomposed into

simpler tasks using the WBS (Work Breakdown Structure) technique. Also, these tasks are

estimated too. Table 1 shows an example of the estimation of tasks associated to the sample

user story presented in the previous section. Then, the user story has been divided into three

tasks: a) log out the virtual world, b) save the user interaction and c) retrieve all the actions.

This division occurs because the user story has obtained a high value in the planning game (i.e.

8 or higher). As a consequence, the students of the Scrum Team break the user story down into

constituent tasks and organize themselves to perform each one. Based on the estimated

complexity, the students estimate the numbers of hours that each task may take. In this phase,

the Product Owner works closely with the Scrum Team to provide clarification and approval on

user stories. As a result, the practices related to project planning defined by CMMI are

accomplished.

Figure 2. Overview of the teaching model based on Scrum and the Agile Coach.

Working Increment
of the Software

•Configuration of

development environment
•Distribution of workstations
•Building of Product Backlog

•Planning Poker
•Sprint Backlog

•Feedback
•Self - reflection
•Celebration
•Improvements

•Product Increment

•Product Integration

24hs

Initial Phase

Sprint
(4 weeks)

Scrum Master

Scrum Team

Keys

Professor’s role Student’s role

Product Owner

Agile Coach

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 219

 Once the Sprint Planning has finished, the Scrum team is ready to start developing the user

stories during 4 weeks. Each user story goes through a miniature process consisting in

analyzing, designing, building and testing. The assets generated in these stages should

accomplish the CMMI practices related to requirement management, technical solution,

software verification and the quality assurance of the process and the product.

In the light of the above, the concept of done arises. To consider a user story done, it must go

through the miniature process in which the assets of CMMI studied in the previous course are

fulfilled. For instance, Table 1 shows when the teams document the user story requirement, the

design report, the code and the reports of testing and metrics along the Sprint.

Each day of the Sprint, a Daily Meeting is held to give place to fluent feedback. These

meetings enable students to communicate the work done and track the progress. The students

answer three questions: What have you done since the last Scrum meeting? What are you

planning to do between now and the next Scrum meeting? What got in your way of doing

work? These questions allow the students to track the progress of the user stories of the Sprint.

As a consequence, the Daily Meetings allow the students to accomplish the practices related to

project monitoring and control, risk management and peer review.

Twice a week, a Weekly Meeting is held between the professor, who plays the role of the

Agile Coach, and each Scrum Team. The purpose of the meeting is monitoring the students’

performance in each stage of the miniature process. During the Weekly Meetings, the Agile

Coach encourages students to show architectural designs, user story specifications and other

relevant documentation to give them feedback and lead them in the right way. As input to the

meeting, the Scrum Master along with the Scrum Team fulfills a template containing the

activities done, problems and impediments found, and the team commitment for the next

weekly meeting. Based on the template information, the Agile Coach gives feedback to

reinforce the student coaching. In particular, the Agile Coach provides support and assistance to

the teams and the Scrum Masters. With this approach, the students receive feedback soon and

more commitment from them is obtained.

Some examples of the Agile Coach's assistance are shown in the bottom row of Table 1. This

kind of assistance should not interfere with the self-organization of the team. For instance, the

Agile Coach may suggest “Revise the avatar’s configuration because something is missing”

(column week 1 and row Agile Coach's assistance in Table 1). This suggestion gives feedback

about a possible problem without pointing out the specific solution to the problem. To follow

the suggestion, the Agile Coach, who should not interrupt the process to correct deviations, let

the students the responsibility for getting more information and clarification from the Product

Owner. If students get poor information, the requirement analysis stage will be weak. As a

consequence, this will strongly affect the next stages of the miniature process. If the team does

not realize the underlying problem, the Agile Coach will teach possible corrective actions to the

problems during the Sprint Retrospective Meeting.

At the end of a Sprint, each team has to integrate and deliver a single product increment

covering CMMI practices related to the integrated product management. In this phase, the

Product Owner is responsible for validating the product and giving feedback to the students. In

this scenario, the Sprint Review practice of Scrum is carried out. If there are user stories undone

when finishing the Sprint, they are re-estimated to be performed during the next Sprint. After

the integration of the teams’ products, a new meeting is held in the Sprint Retrospective phase.

In this meeting, the Agile Coach informs feedback on the quality of products, self-reflections on

team performance and comparison of estimated and adjusted efforts. For instance, the values

obtained in the “adjusted estimate” field in Table 1 are reviewed and each team reflects and

learns from the past experience to improve itself in the next Sprints.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 220

Table 1. Example of the development of a user story by following the teaching model

User
Story

Tasks Initial
Estimate

Adjusted
Estimate

Week 1 Week 2 Week 3 Week 4

US 1

-Log out the
virtual
world
-Save the
user
interaction
-Retrieve all
the actions

30

20

45

48

35

60

 Sprint Backlog
Maintenance

 Specification
and Validation
of the user
stories

 Flow charts

 Workflow
diagrams

 High-level
architecture
design

 Low-level design

 Implementation

 Code documentation

 Test case design

 Test case
performance

 Bug report

 End-user testing

 Metrics and audits

Agile Coach’s assistance

Revise the
storage

configuration
because

something is
missing

I cannot
understand your

design. More
details are

needed

Some bugs may not be
considered by the test cases

I am not able to measure
the team performance

During the meeting, the Agile Coach identifies corrective actions to solve a particular

problem in the miniature process. For dealing with the problems, the Agile Coach makes

suggestions to the students so that they can accomplish the software engineering practices.

Following the example in Table 1, the mistake was that the students did not consider the storage

of the avatar’s configuration, which is crucial to the functionality of the system. The suggestion

aimed at teaching the students to both improve the communication with the Product Owner and

to apply elicitation requirements’ techniques that they have learnt in the previous course. At the

end of the meeting, each team, coached by the Agile Coach, implements the identified actions

for the next iterations.

 At end of the course, the teams show the final integrated product to the Product Owner. The

final product is the result of integrating each team product. Upon approval of the Prodcut

Owner, the Agile Coach carries out the assessment of the software assets that complement the

delivered product.

4. Case-studies

 In order to evaluate the effectiveness of our agile teaching model, we carried out three

experiments between 2008 and 2010 in the context of the Software Engineering course of the

Systems Engineering BSc program at the Faculty of Exact Sciences (Department of Computer

Science - UNICEN, Argentine). In 2008, 63 students took part of this experience and they were

asked to follow RUP. In 2009, we replaced RUP by Scrum, which was run by 56 students.

Finally, 61 students were enrolled in 2010 and we decided to incorporate the role of the Agile

Coach in the teaching model so as to reinforce the Scrum implementation in 2009. In total, 160

students were enrolled; of whom 136 were men (85%) and 24 were women (15%). The students

attending each course were divided into groups of 7±2 members. To simulate a real work

environment, the students were randomly organized so that it is possible to find incompatible

personalities. Each group was asked to follow the corresponding teaching model to complete

the assigned requirements for a given project along the course.

The software project consisted in a virtual world game of the UNICEN called

Universidad3D
2
. Universidad3D allows users to navigate the campus facilities and interactively

learn about academic offerings. The core of the system is a Java 3D engine with features for

2 http://isistan.exa.unicen.edu.ar/u3d/

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 221

http://isistan.exa.unicen.edu.ar/u3d/

scene definition, animation and navigation. Universidad3D is designed as a multi-tiered client-

server architecture supporting chat, e-mail and forum mechanisms for communication between

players. The baseline of the system implementation consisted of 190 Java classes

(approximately 13 KLOC). For the experiments, a set of requirements with similar complexity

were given to each team.

As development environment, the students interacted with a set of open source and

academic-licensed tools. All of the teams received training in the use of these tools. The main

tool selected for developing the user stories was the Integrated Development Environment

(IDE) called Eclipse
3
, in which most of the development tools integrate with. As regards

communication, the teams used Google Groups, chats and face-to-face meetings. To deal with

source code management, SVN
4
 was given to the students. For automatic building and

continuous integration the teams used Hudson
5
. To test the source code, the students used

JUnit
6
 as the testing framework. The issue tracker Mantis was used to manage the project.

Finally, the PAL, which contains all of the organization assets, was stored in a XWiki
7
.

The experiments aimed to assess the quality of the development processes at the end of each

course. This quality is determined by the coverage of the software practices defined by CMMI.

The coverage of practices was measured as follow: for each user requirement, a CMMI practice

was considered covered if there was at least an asset in the Process Assets Library (PAL)

evidencing that the practice has been accomplished by practices proposed in our teaching

approach. Also, partially covered practices were taken into account so as to consider the work

done by the students. In this context, a practice is followed by the students, but it does not

follow a formal method as required by the CMMI.

To smooth the progress of the comparison between RUP and Scrum, we have established a

mapping between CMMI covered by RUP and the Scrum practices. The mapping stems from

proposals in the works of [7, 12, 22, 27]. For instance, [7] shows an empirical mapping in the

context of Project Planning, Project Monitoring and Control, and Requirement Management. In

[12] a general mapping between CMMI level 2 and 3, and Scrum is presented. The work

presented in [22] shows how Scrum allows the achievement of practices related to Project

Planning, Project Monitoring and Control, Integrated Project Management and Risk

Management. Finally, in [27] a mapping between Scrum and practices related to Requirement

Management, Engineering process areas and Project Planning is presented. Table 2 shows the

empirical mapping used to perform the CMMI assessment and the adaptation of the software

assets to a Scrum context.

4.1 The Agile-Based Approach Performance

In this section we analyze the students’ performance in each variant of the teaching model

across three case-studies. Figure 3 summarizes the coverage metric for the evaluation of 3159

software assets corresponding to the three courses. Overall, the results show that students

reached the highest coverage of CMMI practices of the experiments with the inclusion of the

role of Agile Coach in the teaching model. In the light of those results, it can be stated that this

role helps students meet deadlines with high-quality processes and internalize the concept of an

3 http://eclipse.org/
4 http://subversion.tigris.org/
5 http://java.net/projects/hudson/
6 http://www.junit.org/
7 http://www.xwiki.org

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 222

http://eclipse.org/
http://www.xwiki.org/

agile team. As we have stated, the RUP model consists in a strong establishment of a plan and

definitions of deliverables. This characteristic is represented by the high coverage of the

practice related to the establishment and maintenance of the estimates of the project (P1) for the

RUP experience as shown in Figure 3. As a downside, we found a decrease in the coverage of

practices related to establishment and maintenance of the commitment to the plan (P2 and P3).

However, Scrum by itself was unable to deal with this problem, because the students

misunderstood some of the Scrum principles assuming that it was not necessary to do planning

in an agile context. Several students had misconceptions concerning Scrum, namely “planning

is a waste of time”, “documentation is not necessary” and “design is too hard to achieve”. This

led to a weak coverage of the P1 practice. When incorporating the role of Agile Coach in 2010,

the professor asked the students for documents and other evidence to accomplish the practices

related to planning and oversight activities. Thus, the coverage of the practice P1 in 2010

increased to reach almost the P1 coverage in 2008.

Even though RUP encourages the overlapping of phases; in the 2008’s study, it led students

to a waterfall-like process. Thus, a delay in the early stages of the process was inevitable. As a

consequence, we found a weak coverage in the practices related to the design and

implementation (P4), verification (P7), integration (P10) and deployment (P11) of the product

as it is shown in Figure 3. This evidence is consistent with our hypothesis that a plan-driven

model makes students focus on reaching deadlines instead of following the activities of the

development process. Most of these practices showed improvements when Scrum was

implemented in 2009. The reason for this improvement was that the students exercised all the

aspects of software development during a Sprint. It is worth noting that the increase of coverage

of these practices after the incorporation of the Agile Coach in 2010 stems from the coaching of

the Scrum Masters by periodically observing the issue tracker and presenting the Scrum

practices uncovered, partially covered and fully covered during the weekly meetings.

On the other hand, insufficient communication with Product Owner and loose habit of

documentation resulted in a weak coverage of the practices related with the validation of the

product (P8 and P9) in 2008 and 2009. Regarding the preparation for validation (P8), its

coverage hardly overcomes 40% in 2008. Surprisingly, we found even less than 40% of this

practice during the 2009’s study. This low coverage stems from the weak communication on the

user stories’ evolution between the Product Owner and team members in the 2009’s study. As a

consequence, we noticed that the Scrum Masters needed to be coached in playing their role and

in the interaction with the Product Owner. This interaction is crucial to identify inconsistencies

and impediments in the development of the software product. Similar to P8, the coverage of the

practice P9 reached its highest value in the 2010 experience. As a side-effect, we found that the

improved interaction with the Product Owner produced an increase in the coverage related to

practices of project tracking and risk management (P12-P17) in the 2010’s study.

During the implementation of RUP, we found that the lack of a definition of the criteria to

consider a user requirement done and the delay in early stages of the process resulted in a weak

coverage of the practices related to quality assurance and noncompliance communication (P18

and P19) as it is shown in Figure 3. By including Scrum, the coverage of these practices

improved because of the iterative life cycle that aimed to work on all the aspects of software

development during a Sprint. However, some students still misunderstood the done criteria by

assuming that a user story was done without the test-cases. The role of the Agile Coach allowed

the professors to ask the students the test cases and the Product Owner’s approval for the user

stories.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 223

Table 2. Mapping between Scrum and main CMMI practices.

ID CMMI Practices Scrum Practices

P1 Establish and maintain the estimates of Project Planning

Parameters

Establish Scrum pre-game phase and perform planning

poker

P2 Establish and Maintain a Project Plan as the basis for

managing the project

Establish the Vision

Define and maintain the Product backlog

P3 Establish and Maintain the Commitment to the Project

Plan

Perform the face-to-face planning meeting

P4 Select product or product-component solutions from

alternative solutions

Develop based on an incremental and iterative life

cycle

P5 Develop the product or product-component designs.

P6 Conduct the preparation for verification. Establish "done criteria"

Perform sprint review meetings

P7 Verify Selected work products against their specified

requirements.

Perform "done criteria"

Hold sprint review meetings

P8 Conduct the Preparation for validation. Conduct the stakeholder involvement

P9 Validate the product or product components to ensure

that they are suitable for use in their intended operating

environment.

Conduct Product Owner and Scrum Master roles

P10 Make the product-component interfaces, both internal

and external compatible.

Perform daily meetings,

Assemble scrum of scrum in case of larger teams

Hold retrospective meeting.

P11 Integrate and assemble product components, and deliver

verified and validated product.

Perform incremental product delivery

P12 Conduct the preparation for risk management. Define the Product Backlog

Indentify epics

P13 Identify and analyze risks to determine their relative

importance.

Perform daily meetings

P14 Mitigate Risks Perform daily meetings

Identify impediments

P15 Manage requirements and identify inconsistencies with

the project plans and work products.

Establish Scrum pre-game phase and perform planning

poker

Perform the face-to-face planning meeting

Hold sprint review meetings

Manage user stories in the Sprint Backlog

P16 Monitor actual performance and progress of the project

against the project plan.

Perform daily meetings

Hold retrospective meeting

P17 Manage corrective actions to closure when the project's

performance or results deviate significantly from the

plan.

Hold review meetings

Perform daily meetings

P18 Evaluate objectively adherence of the performed process

and associated work products and services to applicable

process descriptions, standards, and procedures.

Hold retrospective meeting

P19 Track and communicate noncompliance issues

objectively , and ensure theirs resolution

Figure 5. Results of the assessments of assets.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 224

0

10

20

30

40

50

60

70

80

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19

%
 o

f
co

ve
ra

ge

CMMI practices IDs

RUP

Scrum without Manager

Scrum with Manager

4.2. Lessons learned and Limitations

In this section we summarize the lessons learned of evolving our teaching model during three

years of a software engineering course. The approach does require some discipline to

implement, but the resulting effect can be rewarding. The major challenges faced by the

students were: inability to make accurate estimates of workload, resistance to expand a design

beyond the immediate requirements, use of an effective and standard testing framework, and

ability to discard code in appropriate situations. Each group of students can tackle much more

sophisticated and interesting project features comparing to the first course based on the RUP

framework.

The main drawback of RUP is that students focus on reaching deadlines falling in a waterfall

process. Unlike Scrum, not all team members participate in the planning phase; for this reason,

it is hard to obtain commitment from all students at the moment of delivering a product

deliverable. Furthermore, regarding testing, students design the required test cases but they

cannot be run because the students are not able to finish the implementation of all the user

requirements.

The teaching model presented in this work and its findings from the experiments seem to be

applicable to other case-studies, under the assumption that the students who attended the course

have been trained in the proposed combination of Scrum and Agile Coaching. One interesting

finding is that the variations of the median and standard deviation of the coverage percentage

throughout the three case-studies denotes the evolution of our teaching model. These metrics

indicate a progressive increment in the median of the percentage of the practice coverage from

30.5% to 58.6% as the teaching model evolves. The incorporation of the Agile Coach’s role

allows us to make adjustments from case to case to both improve the students’ learning process

and gain their commitment to follow the teaching model. Remarkably, the standard deviation

decreased from 19.45% to 5.82% during the period 2008-2010. The teaching model revealed

that this decrease was a consequence of compliance with the done criteria, carefully guidance

performed by the Agile Coach and improvements in project tracking which resulted in a

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 225

homogeneous accomplishment of the SE practices.

 However, a perceived drawback of the Scrum framework in the academic context is that a

Scrum Team requires members with significant experience in software development in order to

be effective. Here, both the Scrum Masters and team members were non-experienced students.

Most of students have contact with the software development process for the first time so that

this is a strong constraint. To tackle this problem, we introduce the Agile Coach’s role as a

vehicle for coaching and guiding Scrum Teams formed by non-experience members to ensure

the delivery of a high-quality product. Thus, an Agile Coach is responsible for gaining

commitment and motivation from students, assisting in the identification and implementation of

improvements and encouraging the communication with the Product Owner to define and

negotiate the working products to be delivered. It is important to note that the Agile Coach

holds a Weekly Meeting to discuss the problems found in the development platform, bad

practices with tools and lack of documentation, but without interfering with the self-organizing

characteristic of agile teams.

 Regarding the generalization of our findings, we now discuss the issues that may bias the

results of our experiment. First, we simulate an industrial environment in which professors do

their best to replicate problems occurring in professional contexts. However, the case-studies

were highly influenced by the characteristics of the academic context namely students’

motivation, Product Owner’ pressure, and the lack of both students' full-time attention and a

physical Team Room for all the teams. Regarding this last issue, we had to deal with students

who were not able to fully advocate to the course because of other courses, mandatory final

exams, and external links with companies. Furthermore, the students were geographically

distributed so that the physical Team Room differs among teams. Second, we carried out the

experiments with students from the UNICEN University. Participants with other backgrounds,

domain knowledge, or levels of expertise might have behaved differently. Finally, the

experience of the Agile Coach acquired along the courses is considered another limitation since

it may impact in the running of the teaching model. The coaching strongly depends on the

ability of the Agile Coach to deal with group management, resource allocation and leadership.

Her common sense and perception play a vital role in the model since she is responsible for

guiding the students in the right way.

5. Related work

 Agile software development has received significant academic attention because of its

widespread application in the commercial world [23, 25]. Thus, teaching and learning strategies

had to be reoriented towards the software industry demands without neglecting academic

quality. Over the past few years, there have been several approaches focused on teaching agile

methodologies. Several studies in master’s degree software engineering courses were performed

to adopt agile methods in the curricula [17, 28]. Coupal and Boechler [5] reported an experience

comparing a capstone project developed following an agile approach to their previous projects

developed in a traditional way. Devedzic and Milenkovic [6] described their eight years of

experiences in teaching agile software methodologies to various groups of students at different

universities. Based on the experience acquired, they recommended how to overcome potential

problems in teaching agile software development by introducing practices such as refactoring

and pair-programming. In addition, the authors found the Scrum roles, Daily Meetings and

Sprint Retrospective appropriated for the process development. Hedin et al. [10] reported the

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 226

use of Extreme Programming to large group of students and found this methodology highly

suitable for introducing them to software engineering. Our work in this paper differs from the

Hedin's one since the teaching model is evaluated by assessing the coverage of software

engineering practices proposed by CMMI. Koster [14] worked on a SE course in which he

introduced AM, particularly pairs programming, to make better software in a more enjoyable

scenario. He performed improvements over previous years. However, his work is particularly

focused on programming practices.

Mahnic [21] discussed the achievement of teaching goals and provided empirical evaluation

of students’ progress in estimation and planning skills using Scrum. Also, he observed the

behavior of students using Scrum for the first time [20]. However, the inclusion of the Agile

Coach is not discussed in these works. Furthermore, our approach considers the teaching of the

CMMI practices by accomplishing Scrum practices.

Regarding teamwork, a pedagogical approach was addressed by Chua-Hoo Tan et al. in

2008. They discussed a hybrid agile methodology developed for giving a course of Information

Systems (IS). In this course, they focused on team-based guidance rather than on traditional

lecture-based teaching. Also, they highlighted the importance of providing working and

integrated software, adopting a progressive and flexible method of software development, and

adapting to changes in system requirements [32]. Our work differs by providing a concrete

comparison between using an agile approach in combination with the coaching of an Agile

Coach.

In the light of the above, Alfonso and Botia [1] have subscribed to this idea and added that

teachers can act as a project manager with the purpose of planning, monitoring and controlling

the learning process effectively. They proposed an iterative and agile process model in a SE

undergraduate course. This model served both as an educational technique for teachers and as a

subject of learning for students. However, the impact of the manager on the teaching model is

not described in terms of the quality of software practices and processes in order to know the

benefits of including the manager in the approach.

 Finally, the combination between CMMI and AM in software development has been tackled

by several authors. They have indicated that AM are useful to reach CMMI maturity levels [2,

26, 31, 33]. For example, Paulk [26] suggests that the use of stories, on site customer and

continuous integration of XP fulfill the goals of the CMMI requirement management.

Sutherland et al. [31] stated that using CMMI and Scrum with Lean development significantly

improved the software process performance positioning the company in a CMMI level 5.

6. Conclusions

This work presented a teaching model based on a balance between Scrum and the Agile

Coach’s role. We discussed the design and implementation of the teaching model for

introducing agile software development in a software project, focusing on both improving the

learning of good software practices and maintaining the quality of software processes.

Teaching Scrum software development seems to be effective if students are involved in the

development of a project rather than in traditional of-the-book classes. Facing the software

engineering problems in a controlled environment gives students the required skills to work in

professional contexts. This teaching strategy may help students integrate with the software

industry in a better way.

In this paper we have also shown the weakness of a rigid software process based on RUP.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 227

This limitation can be tackled by teaching software engineering practices with Scrum, as it was

shown in the second case-study. However, several misconceptions about how to work with the

agile framework arose. To tackle this problem, the third case-study consisted in incorporating

the role of an Agile Coach to coach the students. Following this line, the assessment of the

CMMI practices has also revealed the importance of using a balanced approach between

discipline and agility which can help teams institutionalize Scrum more consistently.

As future work, we will focus on applying a teaching tool to allow students to setup the

physical development environment through a virtual world in spite of being physically

distributed. This tool bases on teaching and integrating teamwork-oriented skills in a real

software development environment based on Scrum [29]. We are planning to incorporate

assistance to students according to their problems observed during the running of the teaching

model. A set of suggestions and corrective actions will be added to the tool in order to provide

students with permanent feedback taking into account the way in which the students learn.

 To sum up, teaching Scrum complemented with the presence of an Agile Coach is effective

for improving communication among students and encouraging their social integration.

Beneficially, Scrum leads students to accomplish several CMMI practices with less overhead in

terms of documentation and bureaucracy. In addition, using Scrum increases the coverage of the

CMMI practices in comparison to the RUP implementation.

References

1. Alfonso, M. I. and Botia, A. An iterative and agile process model for teaching software engineering. In

18th Conference on Software Engineering Education and Training. 2005.

2. Boehm, B. and Turner, R. Balancing Agility and Discipline: A Guide for the Perplexed. Addison

Wesley, 2008.

3. Cano, M. D. Students’ involvement in continuous assessment methodologies: A case study for a

distributed information systems course. IEEE Transactions on Education, 54(3):442 –451, 2011.

4. Cohn, M. Agile Estimating and Planning. Prentice Hall, 2006.

5. Coupal, C. and Boechler, K. Introducing agile into a software development capstone project. In

Proceedings Agile Conference, pages 289 – 297, 2005.

6. Devedzic, V. and Milenkovic, S. R. Teaching agile software development: A case study. IEEE

Transactions on Education, 54, 2011.

7. Diaz, J., Garbajosa, J. and Calvo-Manzano, J. A. Mapping cmmi level 2 to scrum practices: An

experience report. Software Process Improvement, volume 42 of Communications in Computer and

Information Science, pages 93–104. Springer Berlin Heidelberg, 2009.

8. Glazer, H. et al. CMMI or Agile: Why not embrace both! Technical Note, CMU/SEI-2008-TN-003,

Software Engineering Process Management, Carnegie Mellon, 2008.

9. Glazer, H. et al. Love and Marriage: CMMI and Agile need each other. IEEE Software, 2010.

10. Hedin, G., Bendix, L. and Magnusson, B. Teaching extreme programming to large groups of students.

Journal of Systems and Software, 74(2):133–146, 2005.

11. Hurtado Alegría, J. A. and Bastarrica, M. C. Implementing CMMI using a combination of Agile

Methods. CLEI Electronic Journal, 1:1, 2006.

12. Keil, P. and Fritzsche, M. Agile methods and CMMI: Compatibility or conflict? e-Informatica

Software Engineering Journal, 1, 2007.

13. Kniberg, H. The manager’s role in scrum. World Wide Web electronic publication,

http://www.scrumalliance.org/articles/103-the-managers-role-in-agile.

14. Koster, B. Agile methods fix software engineering course. J. Comput. Small Coll., 22:131–137,

December 2006.

15. Kruchten, P. The Rational Unified Process: An Introduction. Addison-Wesley. 2003.

16. Kulpa, M. and Johnson, K. Interpreting the CMMI. CRC Press, 2008.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 228

http://www.scrumalliance.org/articles/103-the-managers-role-in-agile

17. Laplante, P. A. An agile, graduate, software studio course. IEEE Transactions on Education, 49(4):417

–419, nov. 2006.

18. Maher, P. Weaving agile software development techniques into a traditional computer science

curriculum. Third International Conference on Information Technology: New Generations., 0:1687–

1688, 2009.

19. Mahnic, V. Teaching Scrum through Team-Project Work: Student’s Perceptions and Teacher’s

Observations. The International Journal of Engineering Education. 2010.

20. Mahnic, V. A capstone course on agile software development using scrum. IEEE Transactions on

Education, PP(99):1, 2011.

21. Mahnic, V. A case study on agile estimating and planning using scrum. Electronics and Electrical

Engineering, 5, 2011.

22. Marcal, A., Freitas, B., Soares, F., Furtado, M., Maciel, T. and Belchior, A. Blending Scrum practices

and CMMI project management process areas. Innovations in Systems and Software Engineering,

4:17–29, 2008.

23. Mathiassen, L. and Pries-Heje, J. Business agility and diffusion of information technology. Eur. J. Inf.

Syst., 15:116–119, April 2006.

24. Osorio, J. A. et. al. Moving from Waterfall to Iterative Development – An Empirical Evaluation of

Advantages, Disadvantages and Risks of RUP. In Proceedings of 37th EUROMICRO Conference on

Software Engineering and Advanced Applications, pages 453-460. IEEE Society, Finland, 2011.

25. Nerur, S. and Balijepally, V. Theoretical reflections on agile development methodologies. Commun.

ACM, 50:79–83, March 2007.

26. Paulk, M. C. Extreme programming from a CMM perspective. IEEE Software, 18(26):19–26, 2001.

27. Pikkarainen, M. and Mantyniemi, A. An approach for using cmmi in agile software development

assessments: Experiences from three casestudies. In SPICE 2006 conference, Luxemburg., 2006.

28. Rico, D. F. and Sayano, H. H. Use of agile methods in software engineering education. In Proc. Agile

2009 Conf., Chicago, IL, 2009, pp. 174-179., 2009.

29. Rodríguez, G., Soria, Á. and Campo, M. Teaching Scrum to Software Engineering Students with

Virtual Reality Support. Lecture Notes in Computer Science (Advances in New Technologies,

Interactive Interfaces and Communicability - ADNTIIC 2011). In press. Springer-Verlag. 2011. ISSN

0302-9743.

30. Schwaber, K. and Beedle, M. Agile Software Development with Scrum. Prentice Hall, 2002.

31. Sutherland, J. et al. Scrum and CMMI Level 5: The Magic Potion for Code Warrior. Proceedings of

the 41st Annual Hawaii International Conference on System Sciences, 2008.

32. Tan, C., Tan, W. and Teo, H. Training students to be agile information systems developers: a

pedagogical approach. In Proceedings of the 2008 ACM SIGMIS CPR, pages 88–96, New York, USA,

2008.

33. Turner, R. and Jain, A. Agile meets CMMI: Culture clash or common cause? In Don Wells and Laurie

Williams, editors, Extreme Programming and Agile Methods-XP/Agile Universe 2002, volume 2418

of Lecture Notes in Computer Science, pages 153–165. Springer Berlin / Heidelberg, 2002.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 229

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4438695

