
Enriched Internet Topology

Esteban Sergio Poggio⋆1 and José Ignacio Alvarez-Hamelin⋆⋆1,2

1 Facultad de Ingenieŕıa UBA, Paseo Colón 850 C1063ACV–Buenos Aires, Argentina
2 INTECIN (UBA–CONICET)

{esteban.poggio, ihameli}@cnet.fi.uba.ar

Abstract. We present a method to perform Internet tomography ob-
taining its enriched topology, i.e., adding to each link properties such
as delay, utilization, etc. We consider symmetrical measurements, that
is, we execute traceroute’s like probes using controllable nodes playing
either source and target role. We based on PlanetLab testbed our ex-
periments and we obtain an annotated map of a representative Internet
portion. This information could be useful to build a thorough Internet
model.

1 Introduction

This work aims to survey and to study the Internet topology, which is enriched
with annotations such as bandwidth, delay, availability, statistical characteristics
of traffic, loss rate, etc. Internet modelling arises from the necessity to have
networks to test communication protocols, for example, to verify the operation
of new routing algorithms in artificial networks having the same characteristics
of real one. To improve existing models, further explorations are needed, such
as adding to the topology more information like bandwidth or link utilization.

On the one hand, many works [1,2,3,4,5] study end-to-end properties such
as available bandwidth, path capacity, loss rates and packet delays across an
entire network, because it is often desirable to know the characteristics of the
path which the application packets traverse through. On the other hand, there
are several works [6,7,8,9] interested in building Internet topology at routers
level as much as autonomous systems. Topology measurement studies consist of
three phases: (i) topology collection, (ii) topology construction, and (iii) topology
analysis. The map construction process includes an important step called IP alias
resolution [10], the task of identifying IP addresses belonging to the same router
in the collected data set. For instance, inaccuracies in alias resolution affects the
representativeness of the resulting map.

For a network with n end hosts, it is necessary to take O(n2) measurements
and thus lack scalability due to the growth of n. In networks like Internet,
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there are many links which are shared between different paths, so the number
of measurements is quite smaller than O(n2). Chen et al. [1,2] formulate this
problem as follows: considering that a network with n end hosts has r = O(n2)
paths among them, they wish to select a minimal subset of q paths to monitor so
that the metric of all other paths can be inferred. Their algebraic model, which
applies to any network topology, is described as follows: suppose a network spans
s links; they represent a path by a vector v ∈ {0, 1}s, where the jth entry vj is
‘1’ if link j is part of the path, and ‘0’ otherwise. They form a rectangular matrix
G ∈ {0, 1}r×s to represent r paths. Then, they write the system of equations
relating link measurements to path measurements as,

b = G · x , (1)

where b are the measured values, G is the routing matrix and x is the metric
(i.e., loss rate, delay, etc.). Normally, the number of r paths is much larger than
the number of s links (see [2] Fig. 2(a)). This suggests that it could select s
paths to monitor, use those measurements to solve the linear system and infer
the value of the other paths from (1). However, in general G is rank deficient,
specifically q < s, where q = rank(G). In this case, it will be unable to determine
the solution of some links from (1). These links are also called unidentifiable in
network tomography literature [11]. Chen et al. [1,2] are not concerned about
the characteristics of individual links, but the end-to-end properties. To select
a basis set of q paths to be monitored, the authors use standard rank-revealing
decomposition techniques such as QR decomposition [12]. The complexity for
this step is O(rq2). Then, to compute the metric they must find a solution to
the under-determined linear system. In this case, the complexity is O(q2). By
extensively studying synthetic and real topologies, they found that for reason-
ably large n (e.g., 100), q is only in the range of O(n · log(n)). Notice that the
complexity is dominated by the QR decomposition with O(n4 · log2(n)).

Following the idea of how many paths to measure, then Chua et al. [3] recast
the problem as one of statistical prediction and show that end-to-end network
properties may be accurately predicted in many cases using significantly smaller
set of carefully chosen paths than the needed ones for exact recovery. The authors
analyse the routing matrices, and they observe that the rank q of the routing
matrixG is an important quantity in regards to the sampling of paths for network
monitoring. The relevance of this observation is the implication that networks
with routing matricesG of effective rank q′ ≪ q may potentially allow for efficient
monitoring using a very small number of paths (certain links in the network are
more important to measure than others). To analyse the effective rank they use
the SVD (Singular Value Decomposition, see [12]). They show a real case with
Abilene network where they only measure 20−30% of the paths. The complexity
of this approach is dominated by E-BLP (Estimated Best Linear Predictor) on
the Moore-Penrose generalized inverse matrix with O(r2s) ≈ O(n5).

Shavitt et al. [5] introduce another approach which uses algebraic tools to
compute distances that are not explicitly measured. One of the approaches to
distance estimation in the Internet is based on placing Tracer stations in key
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locations and conducting measurements between them. The Tracers construct
an approximated map of the Internet after processing the information obtained
from these measurements. The main idea behind their approach is that using
the route measurements, one can identify nodes through which routes between
several Tracers pass. They refer to these nodes as crossing points. In this way,
they solve the following problem: given a set of end-to-end distances (i.e., delays)
between Tracers with their associated routes, find all the possible segments3 or
groups of consecutive segments whose lengths can be derived. Their approach
has several practical impacts. First, it can reduce the number of Tracers and
measurements without sacrificing information. Second, their algorithm is able to
compute distance estimates between locations where Tracers cannot be placed.
Starting with t Tracers one may reveal n nodes. Using different hash tables
one can identify the crossing points and the segments in O(n) and writing the
n = O(t2) equations in O(ns), where s is the number of segments. Triangulating
the equations requires O(nss′) ≈ O(n3), where s′ is the number of solvable
segments and checking which of the segments are solvable requires less than
O(ns2) ≈ O(n3).

Finally, Allalouf et al. [4] present the design of a system for conducting large
scale QoPC (Quality of Path Characteristics) measurements. The characteris-
tics of the path which the application packets traverse through, are of great
importance due to they determine the suitability of the path to the application
requirements. In general, one way methods are preferred over round trip methods
since they are less susceptible to measurement noise. The IDM (Inter-packet De-

lay Measurement) system was designed and developed to be a powerful tool for
researchers, enabling them to perform one way measurements using packet trains
emitters and sinks for determining the QoPC. The IDM system was designed as
an extension to the DIMES [8] infrastructure. As the set of receivers, the authors
select the ETOMIC [13] servers due to their ability to measure packet arrival
time at sub µSec accuracy.

2 The model

In this section we present the problem to be solved. We are concerned about the
characteristics of individual links to build annotated Internet maps. Thus, we
take measurements in both directions (we call it symmetrical). As a result we will
obtain an overdetermined system, in other words, we will have more equations
than unknowns. For this purpose we select 100 nodes and take measures all
against all.

For the implementation of measurements we use a tool similar to traceroute
called trace. It uses UDP datagrams trying to ensure, at least in outward trip,
that all packets follow the same route, based on all packets sent which belong
to the same data flow as used in [14]. In per-flow load balancing, packet header
information ascribes each packet to a flow, and the routers forwards all packets

3 A segment is a maximal sub-path of a measurement path, whose end-points are
either Tracers or crossing points, that does not include an internal crossing point.
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Fig. 1: A sample network: 3 end-hosts and 4 routers.

belonging to a same flow to the same interface. A natural flow identifier is the
classic five-tuple of fields from the IP header and either the TCP or UDP headers:
Source Address, Destination Address, Protocol, Source Port, and Destination
Port. Path traces collected by this tool consist of IP addresses of devices which
have a round trip time (RTT) and a time to live (TTL) values associated (i.e.,
trace(hi, hj) = (Ti, ..., Tj)), respectively, so each Ti is composed of three values
as follows: Ti : {i (IP address), TTLi, ti (RTTi)}. Then, we are interested in
some specific characteristics such as minimum times and mean times. Below, we
show how to build the routing matrix from measured data and we introduce a
novel method to solve the system generated by the routing matrix.

The Routing Matrix. We assume that ri and hi identify routers and end hosts,
respectively. The lower case letters a, ..., k represent interface IP addresses, and
each source has ‘0’ TTL and ‘0’ RTT. Figure 1 shows a known topology to il-
lustrate the matrix construction method from measurement data trace(hi, hj).
Suppose that we have three path traces trace(h1, h3) = (Ta, Tb, Tc, Td, Te), trace(h2, h3)
and trace(h3, h2). For simplicity, we assume symmetric routing and we consider
directed links. Similar to that developed in previous works [1,2,3,5] we can write
the following system of linear equations:

tb/2 = x1 , (2a)

tc/2 = x1 + x2 , (2b)

td/2 = x1 + x2 + x3 , (2c)

te/2 = x1 + x2 + x3 + x4 , (2d)

where each ty/2 represent the measured RTT (divided by two because of the
symmetric routing assumption) at the interface y, and xi represents the metric
to calculate for link i. Each of these equations define a part of the routing matrix
G in (1). Analysing trace(h2, h3) and trace(h3, h2) we notice the effect of directed
links. Namely, for a link between r2 and r3 we have an unknown x3 obtained from
trace(h2, h3), which is different to x8 extracted from trace(h3, h2). Then, doing
the same for each trace(hi, hj) and putting them together, we form a rectangular
matrix G. Each row of G represents a path in the network where Gi,j = 1 when
path i contains link j, and Gi,j = 0 otherwise. Sharing links between different
paths is represented in the routing matrix as a new ‘1’ in a column that already
exists. For instance, based on topology depicted in Fig.1 we discover x3 from
trace(h1, h3) and also from trace(h2, h3), so Gi,3 = 1 and Gj,3 = 1, strictly
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speaking, we will have a ‘1’ in the same column and this is what generates the
overdetermined system. Finally, we can solve the system defined in (1) applying
LSQR [15] method, which can be used to solve a matrix which might be square
or rectangular, overdetermined or under-determined, and might have any rank.

Matrix Differences. In general, the G matrix is sparse; that is, there are only a
few non-zeros per row, but it is possible to increase the number of zeros by sub-
tracting equations that belong to the same output sequence, i.e., trace(hi, hj).
For instance, subtracting (2c) from (2b) we get,

td/2− (tc/2) = x1 + x2 + x3 − (x1 + x2) ,

(td − tc)/2 = x3 . (3a)

After applying the linear transformation we obtain an equivalent system:

b′ = G′ · x , (4)

where G′ is called matrix differences. Comparing the solution of the matrix G′

by the LSQR method with the solution of the matrix G′ averaging the measured
values for a same column, we do not obtain any differences in the calculated
results. Thus, we can remark that we have reduced the system complexity when
solving the equivalent system. This fact reduces the time complexity, as it will
be shown later.

IP Alias Resolution. Topology construction requires identification and grouping
of IP addresses belonging to the same router. The goal of IP alias resolution is
to identify the IP addresses that belong to the same router and combine them
into a single node in the resulting topology map. To implement this task, we use
a method known as APAR (Analytical and Probed-based Alias Resolver) [10].
APAR includes two steps: (1) analysing IP addresses in the set of collected path
traces to identify a set of candidate subnets, and (2) using the identified subnets
to resolve IP aliases. In our case we only consider point-to-point links, therefore
we will use a /30 mask to identify subnets. Notice that taking symmetrical

measurements help to solve IP alias problem because we have more possibilities
to obtain useful information.

Building G′. After IP alias resolution we have identified the IP addresses that
belong to the same router in the following data structure:

vertices = {v1 : [b, o], v2 : [c, n], v3 : [d, j,m], v4 : [e], ..., v8 : [a], ...} , (5)

where vi represents a vertex (in our case a router) and [a, ..., i] represent a list
of IP addresses that belong to that vertex. Iterating through trace(hi, hj) and
grouping consecutive pairs of interfaces that belong to the same output sequence,
we can define two new data structures called variables and measurements, re-
spectively. We must find to which vertex belongs each IP address obtained and
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then concatenate these values to form a new variable xi. This is exemplified from
a sample network in Fig. 1. For example, analysing trace(h1, h3) we observe:

{

a ∈ v8
b ∈ v1

=⇒ v8|v1 = x1 =⇒ t(x1) = [tb/2] ,

{

b ∈ v1
c ∈ v2

=⇒ v2|v1 = x2 =⇒ t(x2) = [(tc − tb)/2] ,

where ‘|’ denote concatenation.
Due to the fact that Internet is a best-effort network, routing packets through

the same path is not guaranteed and packets travelling on the network may suf-
fer different delay, reordering, etc., we observe negative times when we obtain
the equivalent system defined in (4). We take advantage of symmetrical mea-
surements and we apply one of the following solutions:

1. Reverse link: we have considered directed links, so we have information
about both directions. If we observe a positive time in the opposite direction,
we will replace this measurement by this value. Thus, this link becomes
undirected.

2. Virtual link: this concept is defined in [1]. Given that a negative time is
useless for our approach, the metric of these links is not possible to calculate,
so these ones are unidentifiable links. If it is not possible to useReverse link

solution, we will define a virtual link searching for a positive time towards
successor or predecessor vertices, that is, this virtual link is covered by some
path segment whose metric is identifiable.

As a result of iterating data structure called vertices we will obtain:

variables = {v1|v8 : x1, v2|v1 : x2, . . . , vj |vi : xn} , (6)

where vi|vj denotes a pair of joined vertices and xk denotes the metric for that
link, and

measurements = {t(x1) : [t1(x1), t2(x1), . . . , tx(x1)],
...
t(xr) : [t1(xr), t2(xr), . . . , tz(xr)]} ,

(7)

where [t1(xi), t2(xi), . . . , tn(xi)] is the vector of measurements associated with
the unknown xi.

From the measurements data structure we can solve directly the system de-
fined in (4). Namely, if the vector of values associated with t(xi) has more than
one component, we will average all values to obtain the solution of unknown
xi; and if the vector of values associated with t(xi) has only one component, it
will be the solution of unknown xi. Once we have solved the system, from the
variables data structure we can construct the graph in a standard format which
in general we have three values per row: vj vi xn. Then, we analyse the graph
obtained with Network Workbench

4. Notice that we will build a graph for each
analysis case, that is, one for mean times and another one for minimum times.

4 nwb.cns.iu.edu

13th Argentine Symposium on Technology, AST 2012

41 JAIIO - AST 2012 - ISSN 1850-2806 - Page 18



Complexity. Let s, d and e denote the number of sources, targets and exper-
iments, respectively; we define the complexity of the whole problem as O(n),
where n = s d e. Then, we extract information from measurements trace(hi, hj)
in O(n) and we identify subnets in O(n) too. Making the data structure defined
in (5) has the highest complexity, strictly speaking, we can solve IP alias problem
in O(n e2) ≈ O(n3). Making the data structures defined in (6) and (7) require
both O(n). Finally, solving the system defined in (4) and building the graph
require both O(n).

3 Experimental results

In this section we describe briefly how the measurements have been developed
and the analysis of the experimental results.

Methodology. PlanetLab5 is a global research network that supports the develop-
ment of new network services. We used this testbed for our measurement study
and we deployed it on 100 PlanetLab hosts which belongs to different sites.

Through FLAME (Flexible Lightweight Active Measurement Environment) [16]
platform we measure some network characteristics between PlanetLab nodes.
FLAME is based on the distribution of measurement agents among some net-
work nodes. Such agent send and receive probe packets in response to commands
from a central manager. Users issue such commands to the central manager
with a command line-based console. The agents return the collected measure-
ment data to the central manager, which publishes such data in a standardized
way on a central repository, simplifying the management and further analysis
of such data. All communication among the three components is based on the
XMPP [17] protocol. Using FLAME we implement a similar tool to well-known
traceroute, which we called trace due to the similarity to the one in [10].

The aim of exploration is to achieve a large-scale deployment during a long
period of time. It seeks to make observations between 100 nodes (all against all)
for 24 hours, where the probe packet is executed on PlanetLab agents 5 times
per hour, resulting in a total of 120 measurements per node. First, when we have
tried to achieve this goal, we have found a limitation in FLAME platform due
to a blocking function that does not allow to follow running a single probe up
to obtain a response. Finally, we have avoided this problem dividing the original
slice in five different slices. Thus, we have been able to fulfil the proposed task.

Results. The topological properties of a graph are fully encoded in its weighted
adjacency matrix W , whose entry wij gives the weight on the edge connecting
the vertices i and j, and ‘0’ otherwise (for unweighted graphs wij = aij = 1).
The indices i, j run from 1 to n, where n is the size of the network.

The degree distribution P (k) of a network is defined to be the fraction of
nodes in the network with degree k (i.e., considering the graph as an unweighted
one). Figure 2a illustrates the degree distribution P (k) for two cases of analysis
proposed. This result is similar to other Internet explorations [6,8].

5 www.planet-lab.org
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Fig. 2: Degree and strength distributions

A natural generalization in the case of weighted networks is the strength si.
The strength of a node combines the information about its connectivity and the
intensity of the weights of its links. Due to strength s does not have a discrete
value, we define intervals in a log-binning way. Several works [18,19,20] have
shown that P (s) corresponds to a distribution with heavy tail bounded by a
power-law. Figure 2b illustrates the strength distribution P (s) for two cases of
analysis proposed (with a log-binning). Notice that curves follow a power-law
distribution with a power-law cut-off (close to γ = −1.9), probably due to finite
size of the obtained network. At last, Fig. 2c shows the relationship between
strength and degree of the vertices for two cases of analysis, showing a strong
correlation between both parameters.

Another important source of information lies in the correlations of the degree
of neighbouring vertices. The weighted average neighbour degree distribution can
be deduced from [21] as,

kwnn(k) =
1

n · P (k)

∑

∀i:ki=k

1

si

n
∑

j=1

wijkj , (8)
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where the first sum is the average of all i vertices with degree k, and n · P (k)
gives the number of vertices of degree k. For the unweighted case we have to
replace wij and si by aij = 1 and ki, respectively.

Figure 3a and Fig. 3c show the average neighbour degree distribution kwnn(k),
each one for weighted and unweighted cases, for minimum and mean times,
respectively. We observe that both curves have almost no slope, so we could say, if
we choose a random node in the unweighted case, the degree of its neighbours will
not depend on its own degree. This same behaviour is observed in the weighted
case, due to the strong correlation between degree and strength, as it is shown
in Fig. 2c.

The clustering coefficient is a measure of degree to which nodes in a graph
tend to cluster together. The weighted clustering coefficient of a vertex i is
defined as [21],

cwi =
1

si(ki − 1)

∑

j,h

(wij + wih)

2
aijaihajh , (9)
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Fig. 4: Graph visualization of the topology obtained for the tmin case.

if we consider unweighted graphs, we will obtain ci where (wij + wih)/2 = 1
and si is replaced by ki. The clustering coefficient distribution as a k function
indicates what probability have the neighbours of a vertex with k degree to be
interconnected, and can be expressed as [21],

C(k) =
1

n · P (k)

∑

i/ki=k

ci . (10)

Figure 3b and Fig. 3d show the clustering coefficient distribution C(k) and Cw(k)
for minimum and mean times, respectively. The similarity between the curves
C(k) and Cw(k) is explained on the basis of the aforementioned relation between
the strength and degree (Fig. 2c).

Finally, for graph visualization we use the LaNet-vi (Large Networks visual-

ization)6 tool that is based on k-core decomposition [22]. Figure 4 illustrates the
graph visualization of the topology obtained for the tmin case. On the right it
shows a color scale with the shell-index number, while on the left it shows in a
logarithmic scale the vertices’ degree represented by the size of them. Although
there are some connections to the central core, there are also features of the
router maps. There is a trend present where all layers are densely populated

6 http://lanet-vi.soic.indiana.edu/
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and connections (edges) occur mainly between layers. On the periphery we can
observe nodes with a substantial size, where the size of these nodes is slightly
reduced compared to those found in other studies, i.e., [23], this is due to the
limited number of sources from which measurements were made.

4 Conclusions

In this work we achieve Internet tomography using PlanetLab and taking sym-

metrical measurements. This symmetrical way considers nodes as sources and
targets, which make easier IP alias resolution. Later, with stored data and ap-
propriate processing, we build annotated Internet maps for two parameters of
interest: minimum and mean times. These parameters give us an idea of different
network characteristics. On the one hand, the minimum time is an indicator of
the physical length of the links. On the other hand, the mean time is an indi-
cator of link congestion. Finally, and most importantly, the proposed processing
allows working with large networks because of its low complexity.

Although a priori we expected to observe a marked difference between the
average neighbour degree and the clustering coefficient for weighted and un-
weighted graphs, this did not happen. The justification lies in the strong cor-
relation between degree and strength distributions. Moreover, it is remarkable
that there are not any differences comparing the tmin with the tmed case for
both distributions (weighted clustering coefficient and weighted average neigh-
bour degree). Even though the model that we consider for the analysis of the
mean times is a simple one, we might think that each link is independent of an-
other, suggesting a proper network operation. For instance, if a link is saturated,
it will not influence the congestion of other neighbour links.

In the future there will be open several possibilities to continue studying this
issue. Therefore, it could be possible to increase the number of measurements
executing traceroute’s like probes towards non-controllable nodes (i.e., asym-

metrical), this means that even though we could lose the possibility of obtaining
characterization in both link directions, we might get a more representative map
based on undirected measurements.
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