
Behavior Assessment based Selection Method
for Service Oriented Applications Integrability*

Martín Garriga1,3, Andres Flores1,3, Alejandra Cechich1, and Alejandro Zunino2,3

1 GIISCo Research Group, Facultad de Informática, Universidad Nacional del Comahue,
Neuquén, Argentina. [martin.garriga, andres.flores, alejanda.cechich]@fai.uncoma.edu.ar ,

2 ISISTAN Research Institute, UNICEN,
Tandil, Argentina, azunino@isistan.unicen.edu.ar

3 CONICET (National Scientific and Technical Research Council), Argentina.

Abstract. Service-Oriented Computing promotes building applications by
consuming reusable services. However, facing the selection of adequate
services for a specific application still is a major challenge. Even with a reduced
set of candidate services, the assessment effort could be overwhelming. On
previous work we have presented an approach to assist developers on the
selection of services from a syntactic viewpoint of a matchmaking process for
interfaces compatibility. In this paper we extend the approach to assess the
behavior of services taking advantage of a black-box testing framework to
verify compatibility on the expected execution behavior of a candidate service.
This paper analyzes the selection method through a case study, to show its
potential on determining the best choice of a service among a set of candidates.

Keywords: Service oriented Computing, Component-based Software Eng-
ineering, Web Services

1. Introduction

Service-Oriented Computing (SOC) promotes building distributed applications in
heterogeneous environments [1]. Service-oriented applications are developed by
reusing existing third-party components or services that are invoked through
specialized protocols. The SOC paradigm has been widely adopted by using the Web
Services technology [2], which leads to a concrete decentralization of business
processes and a low investment of new technologies and execution platforms.
However, the efficient reuse of existing Web Services is still a major challenge. On
one side, searching for candidate services on the Web implies a manual task yet,
mainly exploring web catalogs usually showing poorly relevant information. On the
other side, the result of a prosperous search requires skillful developers to deduce the
most appropriate service to be selected from the set of candidates, for the subsequent
integration tasks. Even with a reduced set of services, the required assessment effort
could be overwhelming. Not only functional and non-functional properties must be
explored on candidates, but also the required adaptations for a correct integration
allowing client applications to consume services while enabling loose coupling for
maintainability.

* This work is supported by projects: ANPCyT–PAE-PICT 2007-02312 and UNCo–IEUCSoft
(04-E072)

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 339

In order to ease the development of SOC-based applications we presented on
previous work [3,4] a proposal for discovery, selection and integration of services,
which is based on two recent approaches particularly concerned on development and
maintainability. The first approach, called EasySOC [5], provides specific semi-
automated methods for both discovery and integration of services. The second
approach [6], was initially developed to work with software components by supplying
a method for selection of the most appropriate third-party candidate component, as a
solution for substitutability of component-based systems. In fact, this paper is focused
on the selection method to detail the last extensions carried out, which allow to
steadily use it in the context of service-oriented applications. Both approaches supply
a semi-automatic tool support, which have been conveniently integrated to validate
the ideas proposed in our work.

The main aspect of the selection method is the use of testing techniques to achieve
a reliable level on the required compatibility of candidate services. This is based on
the observability testing metric [7] that observes a component operational behavior by
analyzing the functional mapping of data transformations (input/output) performed by
a component. Therefore, a candidate service is assessed by an execution behavior
process which requires a compliance test set to reveal a potential compatibility – as
we analyzed on previous work [3,4,6] and was also discussed in [7].

The whole selection method comprises two assessment procedures: an Interface
Compatibility analysis and a Behavioral Compatibility evaluation. The former is made
at a syntactic level, by means of a comprehensive scheme to evaluate the interface
provided by candidate services. The latter is based on a specific Test Suite (TS) which
has been designed from a particular selection of testing coverage criteria, to achieve a
behavior dynamic representation of services, viz. a Behavioral Test Suite.

The paper is organized as follows. Section 2 presents an overview of the Selection
Method. Section 3 describes the Behavioral Test Suite, Section 4 focuses in the
Interface Compatibility analysis, and Section 5 details the Behavior Compatibility
evaluation. Finally, Section 6 presents the Related Work, while Conclusions and
future work are presented afterwards.

2. Service Selection Method

During development of a service-oriented application, a developer may decide to
implement specific parts of a system in the form of in-house components. However,
the decision could also involve the acquisition of third-party components, which in
turn could be solved with the connection to web services. When many candidates are
discovered a developer still needs to deduce the most appropriate candidate service.
Fig. 1 depicts our proposal intended to assist developers in the process of selection of
web services, which is briefly described as follows:

The selection method requires the definition of a simple specification (in the form
of a required interface IR) as input for its two main assessment procedures. The
Interface Compatibility evaluation is based on a comprehensive Assessment Scheme
to recognize strong and potential matchings from a required interface (IR) and the
interface provided by candidate services (IS). The outcome of this step is an Interface

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 340

Matching List where each operation from IR may have a correspondence with one or
more operations from IS [6].

The Behavioral Compatibility evaluation is intended to analyze the execution of
candidate services by means of a Behavioral Test Suite (TS), which is built to
represent behavioral aspects from a third-party service. For this evaluation, the
Interface Matching List produced in the previous step is processed, and a set of
wrappers W (adapters) is generated, where remote invocations to IS are solved through
a proxy (PS) derived from its WSDL description. Thus, a candidate service is
evaluated by executing the TS against each w ∈ W, where at least 70% successful
tests must be identified on some wrapper to confirm a behavioral compatibility [6].
Besides, such successful wrapper allows an in-house component to safely call the
candidate service once integrated into a client application.

Fig. 1. Service Selection Method

Next sections provide detailed information particularly related to the
aforementioned activities. A case study will be used to illustrate the usefulness of the
Selection Method.

2.1. Case Study

Let us suppose the development of a communication tool for exchanging instant
messages with contacts from a user’s contact list. We have specified the behavior of
the required service in the form of operations defined into a Java interface IR, named
ChatIF that is showed in Fig. 2(a), and includes a complex type structure named
Content for exchanging messages. By running the first phase of the process, a set of
web services called OMS (Online Messenger Service) has been discovered at
http://www.nims.nl/. Particularly we are interested in two of those services: OMS2 and
OMS2_Simple. The former (http://www.nims.nl/soap/oms2.wsdl) provides an interface IS1
comprising 38 operations, and the most relevant ones are shown in Fig. 2(b), where
another complex type structure named Message is used for enclosing the contents to
be exchanged. The latter (http://www.nims.nl/soap/oms2_simple.wsdl), whose interface IS2

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 341

is shown in Fig. 2(c), uses the String type for the operations’ return, instead of any
other type (built-in or complex).

(a) Required Interface ChatIF

(b) Candidate Web Service OMS2

(c) Candidate Web Service OMS2_Simple

Fig. 2. Instant Messenger Application – Chat

3. Behavioral Test Suite

In order to build a TS as a behavioral representation of services, specific coverage
criteria for component testing has been selected. The goal of this TS is to check that a
candidate service S with interface IS coincides on behavior with a given specification
described by a required interface IR. Therefore, each test case in TS will consist of a
set of calls to IR’s operations, from where the expected results were specified to
determine acceptance or refusal when the TS is exercised against S (through IS).

The Behavioral TS is based on the all-context-dependence criterion [3], in which
synchronous events (e.g., invocations to operations) and asynchronous ones (e.g.,
exceptions) may have sequential dependencies on each other, causing distinct

<<imports>>

<<imports>>

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 342

behaviors according to the order in which they (i.e., operations or exceptions) are
called. The criterion requires traversing each operational sequence at least once.

Into our approach, operational sequences are represented by using regular
expressions, where its alphabet is comprised of signatures from services’ operations.
This helps to describe a general pattern referred to as the “protocol of use” for a
service interface [13,14].

Following with the case study presented in Section 2.1, to build a Behavioral TS
for ChatIF, some steps supported by the TestOOJ tool [15] must be done. Initially a
concrete class implementing the ChatIF interface must be created to describe the
required behavior in the form of expected results for some representative selected test
data. This shadow class is called Chat and it simply resembles an expected behavior
according to some specific input data (or return a particular output data) for each
operation within the ChatIF interface.

For example, the operation receiveNextMessage receives as input two Strings
(user and password), and returns a String containing a message. The expected
behavior is checking that the user has been previously created and logged-in, to then
return a String containing a message. For this case study, the test data involve two
users with their corresponding passwords, and the message is always “hello”.

The next step implies defining the protocol of use (in the form of a regular
expression). For the shadow class Chat could be as follows:

Chat createUser+ login (receiveNextMessage | sendMessageTo)∗ logout

This regular expression is processed to derive sentences (describing operational
sequences) according to a certain number of operations to be invoked, from where a
set of test templates is generated. In this case, the minimum number would be 7,
which produces 19 test templates with one or two occurrences of createUser operation,
and single, alternated or combined occurrences of operations to send and receive
messages. Detailed explanations of this step can be seen in [8].

After this, the selected test data values must be combined with the 19 test
templates (operational sequences) to generate a TS in a specific format: based on the
MuJava framework [16]. This combination was based on the pairwise algorithm [16],
from where 468 test cases were generated in the form of methods inside a test driver
file called MujavaChat. Fig. 3 shows the test method testTS_0_1, which exercises the
following sequence: createUser, login, sendMessageTo, and logout.

4. Interface Compatibility

Particularly, the Interface Compatibility analysis is comprised of a practical
scheme to analyze operations from the interface IS (of a candidate service S), with
respect to the required interface IR. The outcome of this step may avoid early
discarding a candidate service upon simple mismatches but also preventing from a
serious incompatibility. In addition, helpful information about the adaptation effort of
a candidate service may take shape for a positive integration into the consumer
application.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 343

Table 1 presents the Assessment Scheme that is comprised of four compatibility
levels to define different syntactic constraints for a pair of corresponding operations.
Constraints are based on individual conditions, summarized in Table 2, according to
the elements of an operation’s signature (return, name, parameter, exception). Types
on operations from IS should have at least as much precision as types on IR. However,
the String type is a special case, being considered as a wildcard type since it is
generally used in practice to allocate different kinds of data. Parameters (P) and
return type (R) are the most significant signature elements of the scheme.

Table 1. Assessment Scheme: Automatic Match and Semi-Automatic Mismatch Solving

Level Part Constraints
� Exact
 Match

Auto
(1 case)

Two operations must have identical signatures.
(four identical conditions): [R1,N1,P1,E1]

�Near
Exact Match

Auto
(13 cases)

Three or two identical conditions. The remaining might be second
conditions: (R2/N2/P2/E2). Exceptional cases: three identical

conditions with a remaining third condition (N3/P3/E3)
Semi-Auto
(1 case)

Three identical conditions with the return that may have a nonequivalent
complex type or lost precision: [R3,N1,P1,E1]

� Soft
 Match

Auto
(26 cases)

Similar to the previous level, but only two identical conditions. Previous
exceptional cases may occur with lower equivalence conditions.

Semi-Auto
(13 cases)

Two identical conditions, similar to automatic scheme. Either return or
parameter (not both) with a nonequivalent complex type or lost precision
(R3/P4).

� Near
 Soft Match

Auto
(14 cases)

There cannot be two identical conditions, i.e. all conditions can be relaxed
simultaneously.

Semi-Auto
(40 cases)

Either two identical conditions with the condition P4 or relaxing all
conditions simultaneously.

Fig. 3. MuJava Test Case for shadow class of ChatIF

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 344

The Assessment Scheme in Table 1 is able to recognize 108 cases for Interface
Compatibility (where each part is comprised of 54 cases), from the combination of
individual conditions (classified into the four levels of compatibility). For complex
data types their comprising fields must be equivalent one-to-one with fields from a
complex type counterpart.

Table 2. Syntactic Operation Matching Conditions for Interface Compatibility

R
et

u
rn

R0: Not compatible R1: Equal return type

R2: Equivalent return type (subtyping, Strings

or Complex types)

R3: Non equivalent complex types or lost precision

N
am

e

 N1: Equal operation name

N2: Equivalent operation name (substring) N3: Operation name ignored

P
ar

am
et

er
s

P0: Not Compatible P1: Equal number, type and order for parameters

P2: Equal number and type for parameters P3: Equal number and type at least equivalent (including

subtyping, Strings or Complex types) for some

parameters into the list

P4: Nonequivalent complex types or lost

precision

E
xc

ep
-

tio
n

s E0: Not compatible E1: Equal number, type, and order for exceptions

E2: Equal number and type for exceptions into

the list.

E3: If non-empty original’s exception list, then non-empty

candidate’s list (no matter the type).

The final outcome of the Interface Compatibility step is a matching list

characterizing each correspondence according to the four levels of the Assessment
Scheme, named Interface Matching List. For each operation opR ∈ IR, a list of
compatible operations opS ∈ IS is shaped. For example, let be IR with three operations
and IS with five operations. The matching list might result as follows:

{ (opR1, {opS1, opS5}), (opR2, {opS2, opS4}), (opR3, {opS3}) }.

Each compatibility case represents a specific numeric value in the Assessment
Scheme. For example, the value of exact equivalence is 4. Therefore, a totalized value
could be determined to synthetize the degree of Interface Compatibility between a
required interface IR and a candidate interface IS (from a service S). Only the higher
compatibility level for each operation is considered to calculate that value, named
Syntactic Distance – the formula can be seen in [4].

If all operations in the Interface Matching List presents an exact equivalence, the
Syntactic Distance between IR and IS is zero. This initially means that IR is included
into IS, though IS may have additional operations. The success on the precision
achieved during the Interface Compatibility step is essential to reduce the
computation effort for the subsequent step of behavior evaluation.

Following the case study, in Table 3 the matching result for ChatIF and service OMS2
is shown. No automatic matching has been found for ChatIF and OMS2Simple, and the
mismatches have been solved in the semi-automatic step, by the notion of the String
type as a wildcard type. At this point, the Interface Matching List for both candidates
is available. Thus, the syntactic distance could be used to determine which of them is
better to continue with the step of Behavior Compatibility. Based on the summary
shown in Table 4, the syntactic distance between ChatIF and OMS2 is 29/20−1=0.45 ,
while the syntactic distance for OMS2_Simple is 38/20−1=0.9 . Because the lower

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 345

value is better, the suggested candidate service would be OMS2. However, a
conclusive decision to either accept or reject a candidate service S must be made
through the step of Behavior Compatibility. The following section gives details of the
step in which a required service’s functionality is represented as a particular Test
Suite.

Table 3. Interface Compatibility between ChatIF and OMS2

ChatIF createUser login logout receiveNextMessage sendMessageTo

OMS2

OMS_CreateUser
[R1, N2, P1, E1]

OMS_Login
[R1, N2, P1, E1]

OMS2_Logout
[R1,N2,P1,E1]

OMS_ReceiveMessage
[R2, N2, P1, E1]

OMS2_SendMessage
ToChat [R1,N2,P4,E1]

 OMS2_Logout
[R1, N3, P1, E1]

OMS_Login
[R1, N3, P1, E1]

OMS_DeleteUser
[R1, N3, P1, E1]

OMS_DeleteUser
[R1, N3, P1, E1]

Table 4. Interface Compatibility Summary for ChatIF and services OMS2, OMS2_Simple

ChatIF createUser login logout receiveNextMessage sendMessageTo Total Compatibility

OMS2 5 5 5 6 8 29

OMS2_Simple 7 7 7 7 10 38

Total Best Compatibility = 20 (based on ChatIF size)

5. Behavior Compatibility

To carry out the Behavior Compatibility evaluation for a candidate service S, a
wrappers set W needs to be built. Those wrappers will be necessary to execute the
Behavioral TS (designed for the required interface IR) against each w ∈ W. Initially,
only the higher compatibility level of the Interface Matching List is considered.

This process is based on the Interface Mutation technique [18, 19], and it applies
the mutation operator to change invocations to operations and another operator to
change arguments for parameters. Then a Wrapper Generation Tree is created, where
in each level of the tree is added the set of correspondences (opS ∈ IS) for a different
operation opR ∈ IR.

When a list contains various parameters of the same or equivalent type, a
combination of arguments is needed. Each combination arising from different
parameters ordering should be added into the Wrapper Generation Tree, in the form
of a new branch. For example, considering the case study, the operation
sendMessageTo implies a likely case in which its complex parameter Content could
match any of the String arguments from operation OMS2_SendMessageToChat, due
to the P4 condition. Therefore, in order to find the right match, there should be a swap
into the parameter list, to successfully identify the behavior compatibility for those
operations. Then, since the parameters list has a size of 4, the number of combinations
rises to 16, as shown in Fig. 4, where each path from the root to a leaf node represents
a different wrapper to be generated.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 346

The combination process for parameters considers the syntactic equivalence
conditions from Table 2, i.e., [P1,P2,P3,P4], which impact in the tree in the
following way:

• P1: No arguments’ combination is needed.
• P2: Parameters of the same type are grouped and permutations are applied into

each group. Then the whole solution is generated combining the permutations.
• P3: This case is similar to P2, but considering subtypes and the String type as a

wildcard. This implies the following cases:
� When the amount of numeric type parameters is equal between the evaluated

operations, if there are String parameters in both operations, they have to
be combined among each other. We assume as a good programming practice
that if in the signature of an operation there are both numeric parameters and
String parameters, the latter should not allocate numeric values.

� When the amount of numeric type parameters is not equal between the
operations, at most one of the String parameters is being used as a
wildcard.

� We assume that one complex counterpart exists for each complex type. Their
comprising fields must be of an equivalent type and they have to be defined
in the same order.

• P4: This case is similar to previous but it considers lost precision. Once again,
there are two possibilities:
� When the amount of numeric type parameters is equal, String types are

paired between themselves.
� When the amount of numeric type parameters is not equal, all parameters are

used to generate combinations (except for complex types).
� Complex parameters are treated as described earlier, but without restricting

the order inside the structure.

These conditions may be simplified, especially for P3 and P4, by establishing a
blind combination among parameters. However, by assuming those conditions, the
number of combinations (and the generated wrappers) substantially decreases. Since

Fig. 4. Wrapper Generation Tree for ChatIF and OMS2

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 347

scalability is a key factor when generating wrappers, we introduced a partial
wrappers’ set generation procedure. This avoids reaching the physical limit imposed
by the file system. A developer may generate the whole set, separated blocks or a
subset of specific wrappers. For this reason, wrappers are numerated in sequence. In
Fig. 5 is showed how to interact with the process of wrappers generation.

Service Wrappers evaluation.
At this point, the Behavioral Assessment activity requires executing the Behavioral

TS (built through the required interface IR) against candidate services through the
generated wrappers.

In this process, the wrappers are generated with an additional responsibility of
auto-configuration, by instantiating the corresponding subclass for IS (of a service S).
In addition, the subclass implementing the interface IS, which links wrappers to the
proxy PS, is also auto-configurable by instantiating classes comprising the generated
proxy. Fig. 6 depicts the class structure for the ChatIF case study. The TS MujavaChat
instantiates and invokes the Chat class, which represents not only the shadow class for
the required interface ChatIF, but also represents the wrappers. This is done to avoid
name modifications into the TS (designed for the shadow class).

Thus, if a wrapper successfully passes at least 70% of the Behavioral TS, it will be
correctly describing the required behavior defined by the shadow class. Finally, this
wrapper may be used instead of the shadow class allowing a safe integration of a
candidate service.

Fig. 5. Wrappers generation for Behavior Compatibility

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 348

Table 5 shows a summary of results from running the MujavaChat TS against the 16
wrappers for OMS2 service, where only one wrapper passed successfully the tests. For
OMS2_Simple, were also generated 16 wrappers by the same situation with the
parameter list in the operation OMS2_SendMessageToChat. Only one successful
wrapper had been identified. Although, for both services was possible to find a
compatibility on execution behavior. Again, the syntactic distance is the key factor to
determine the definite service selection. In this case, the lower and best syntactic
distance value corresponds to the OMS2 service.

Table 5. Compatibility Summary for ChatIF and services OMS2, OMS2_Simple

Services
Compatibility

Value
Syntactic
Distance

Amount of
Wrappers

Number of Successful
Wrappers

OMS2 29 0.45 16 (1)wrapper0

OMS2_Simple 38 0.9 16 (1)wrapper0

Since the selection method has been defined from a testing based assessment
model, intermediate processes were defined not only to perform an evaluation of
candidate services, but also to provide an early solution through the testing activity.
The process offers a pragmatic guide to analyze any off-the-shelf component,
including web services as a particular form of software component [10].

6. Related Work

The work in [21] is very close to our goals. The approach intends to evaluate
compatibility for services with two purposes: substitutability and composability. The
evaluation is based on input and output data registered after testing individual
operations for each candidate service. To do this, a different TS is built for each
service to be evaluated, which is based on a selected input data (either randomly or
manually). The main intent of our approach is fulfilling a required functionality
through a selected candidate service. For this, the expected behavior is described in
form of a specific and unique TS, which is then exercised against services under
evaluation. The main aspect of our TS relies on describing a complex behavior
exhibited by operational sequences (instead of testing individual operations), which is
more likely on stateful web services [1,11] – i.e., those with a modal characteristic

Fig. 6. TS for ChatIF to evaluate Wrappers through the Proxy.

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 349

[22]. Additionally, the behavioral evaluation is only done after passing the syntactic
Interface Compatibility analysis, which reduces computation for the testing phase.
Thus, only those candidates with a high detected chance of compatibility will be put
under test for Behavior Compatibility evaluation, making the whole process more
efficient without losing effectiveness.

The work in [23] is also concerned with substitutions of inoperable services with
compatible ones. Automatic finding for optimal solutions implies the challenging
issue of how to discern the behavior of services. The approach attempts to discover
and comprehend services’ behavior and classify them into clusters by means of
compliance testing. Behavior tables are created to elicit services’ behavior by an
iterative process that starts with random testing values to achieve the services
clustering. As recognized by the authors, the whole process of eliciting service
behavior tables implies a costly effort, where performance improvements are an edge
of their further work. Similar to our proposal, this approach does not assume the
existence of ontologies or any sort of semantic tagging. However, the approach has a
very low confidence on any service description, also ignoring WSDL specifications.
On the contrary, into our proposal the comparison of WSDL descriptions plays an
important role with a high influence on performance. Also, several Information
Retrieval-based approaches have shown their effectiveness on facilitating service
discovery and selection while working upon WSDL descriptions [20].

The work in [24] is concerned with the improvement of test efficiency during
service selection and composition, focusing in dependability and trustworthiness
issues. A framework is proposed to support group testing, applied over a set of atomic
services that could be potential parts of a service composition. For each service
specification, there could be many functional candidates. The group testing
mechanism broadcasts the test cases to all atomic candidate services. The oracle for
each test case is generated by a voting service based on the majority principle. The
same service collects the outputs and then dynamically evaluates the number of
disagreements into each service profile. Then a rank is built based on the service’s
reliability and the test cases’ effectiveness, identifying and eliminating test cases with
overlapping coverage.

Our work is based on a full coverage TS, particularly applying the all-context-
dependence criterion over operational sequences. As we mentioned earlier, we
applied minimization strategies to address the unwieldy amount of test cases.
Nevertheless, another simple solution to cut down computation could be directly
designing a reduced TS based on the result of the Interface Compatibility step. Test
cases could be generated only for those operations without a single syntactic
correspondence. This avoids executing the whole TS against the wrapper set that is
built in the Behavioral Compatibility step.

Another work [25] is intended to cope with Web service testing. A collaborative
testing framework has been proposed, where testing tasks are performed through the
collaboration of various test services (T-services) that are registered, discovered and
invoked at runtime using an ontology of software testing called STOWS. Each
functional service should be accompanied with a special T-service to avoid disturbing
its normal operation, though managing the T-services’ set introduces an inconvenient

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 350

overhead. For this reason test brokers were introduced to deal with their composition
and coordination. However, test brokers must perform a centralized control function,
which may derive into a bottleneck. The proposed framework is particularly intended
to verify a proper service execution through strategies to find faults, and also using a
semantic Web service approach. Instead, our proposal is oriented to compliance
testing, since the TS is used to assess candidate services on their expected behavior.
As semantic information of web services such as ontologies is rarely available, our TS
is built from syntax definitions of Web Services in WSDL language.

Other important related work about testing SOC-based systems is summarized in
[26-28], which includes SOAP testing (to check publication and discoverability,
among others), model-based SOA testing (using UML, Petri Nets, FSM, BPEL, etc.,
to describe complex behavior of compositions), agent-based or monitoring
approaches (involving performance and reliability issues), and fault-based testing
(such as XML perturbation, WSDL mutation, fault injection, etc.). Strategies for test
data generation includes specification-based approaches (particularly WSDL-based),
model-based approaches (similar to above), domain-slicing and partition-category
(using XML Schemas and OWL-S). Some approaches for model-based SOA testing
apply symbolic execution (based on extensions of FSMs) or model checking (by
deriving OWL-S or BPEL specifications and making use of SPIN, NuSMV, or Blast
tools). Although the main goal of those approaches implies to check for correctness of
atomic services or compositions, some of the applied strategies are carefully
considered to make improvements into our compliance testing oriented approach.

7. Conclusions and Future Work

In this paper we have presented details of a Selection Method which allows
evaluating a candidate web service for its likely integration into a SOC-based
application under development. This method is part of a larger process for discovery
and integration of services, and provides a practical Interface Compatibility analysis
and a Behavioral Compatibility evaluation. Additionally, such selection might
consider other aspects like Quality of Service parameters – e.g., performance,
security, and so on.

Particularly, the Behavioral Compatibility activity was improved in this work. The
wsdl specifications were added as a valid input to the process, automatically
generating the logic for remote connection (proxy and stub). All versions of wsdl
language are supported now. The wrappers’ generation step also gained both
flexibility and expressiveness, supporting all the subtypes definition introduced in the
Interface Compatibility activity. Finally, when a developer identifies a subset of
wrappers with a major probability of success, he or she is allowed to generate only
those wrappers (or even a unique wrapper), substantially reducing the computation
effort.

The whole process of discovery, selection and integration has a fully support to
achieve efficiency and reliability. Our current work is focused on exploring
Information Retrieval techniques to better analyzing concepts from interfaces, which
have been initially applied on the EasySOC approach. Another concern implies the

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 351

composition of candidate services to fulfill functionality, which is particularly useful
when a single candidate service cannot provide the whole required functionality. We
will expand the current procedures and models mainly based on business process
descriptions (BPEL) and service orchestration [10, 11].

References
1. Erickson, J., Siau, K.: Web service, service-oriented computing, and service-oriented

architecture: Separating hype from reality. Journal of BD Management, 19(3), 42-54 (2008).
2. Bichler, M., Lin, K.: Service-oriented computing. Computer, 39(3), 99-101 (2006)
3. Flores, A., Cechich, A., Zunino, A., Polo, M.: Testing-Based Selection Method for

Integrability on Service-Oriented Applications. In: 5th IEEE ICSEA’10, 373-379 (2010)
4. Garriga, M., Flores, A., Cechich, A., Zunino, A.: Testing-based Process for Service-oriented

Applications. 30th IEEE SCCC’11 (2011) [post-proceedings in press]
5. Crasso, M., Mateos, C., Zunino, A., Campo, M.: EasySOC: Making Web Service

Outsourcing Easier. Information Sciences, Elsevier (2010)
6. Flores, A., Polo, M.: Testing-based Process for Component Substitutability. Journal STVR,

Wiley, p. 33 (2010) [early view press]
7. Jaffar-Ur Rehman, M., et.al.: Testing Software Components for Integration: a Survey of

Issues and Techniques. Journal STVR. Wiley, 17(2), 95-133 (2007)
8. Garriga, M., Flores, A., Cechich, A., Zunino, A.: Practical Assessment Scheme to Service

Selection for SOC-based Applications. In: 12th ASSE’11, part of 40 JAIIO, 204-215. (2011)
9. Canfora, G., Di Penta, M.: Testing Services and Service-Centric Systems: Challenges and

Opportunities. IT Professional, 8(2), 10-17 (2006).
10. Kung-Kiu, L., Zheng, W.: Software Component Models. IEEE Transactions on Software

Engineering, 33(10), 709-724 (2007).
11. Weerawarana, S.; et al., Web Services Platform Architecture: SOAP, WSDL, WS-Policy,

WS-Addressing, WS-BPEL, WSReliable Messaging, and More. Prentice Hall PTR (2005).
12. Ye, W., Dai, P., Mei-Hwa, C.: Techniques for Testing Component-based Software. In: 7th

IEEE ICECCS. Skovde, Sweden, pp. 222–232. (2001).
13. Kirani, S. H., Tsai, W. T.: Method Sequence Specification and Verification of Classes.

Journal of Object-Oriented Programming, vol. 7, no. 6, pp. 28–38. (1994)
14. Object Management Group, Inc: Unified Modeling Language: Superstructure version 2.0.

OMG Tech. Rep. http://www.omg.org (2005)
15. Polo, M., Tendero, S., Piattini, M.: Integrating Techniques and Tools for Testing

Automation. Software Testing, Verification and Reliability. vol. 16, no. 1, pp. 1–37. (2006)
16. µJava Home Page: Mutation system for Java programs. http://www.cs.gmu.edu/

offutt/mujava/. (2008)
17. Czerwonka, J.: Pairwise Testing in Real World. In: 24th PNSQC. Portland, OR, US, pp.

419–430. (2006)
18. Gosh, S., Mathur, A. P.: Interface Mutation. Software Testing, Verification and Reliability,

11:227–247. (2001)
19. Delamaro, M, Maldonado, J., Mathur, A.: Interface Mutation: An Approach for Integration

Testing. IEEE Transactions on Software Engineering, 27(3):228–247. (2001)
20. Rodriguez, J.M., Crasso, M., Zunino, A., Campo, M.: Discoverability anti-patterns:

frequent ways of making undiscoverable Web Service descriptions. In: Proceedings of the
10th ASSE. During 38th JAIIO, ISSN 1850-2792, pp. 1-15. Mar del Plata, Argentina.
(2009)

21. Ernst, M., Lencevicius, R., Perkins, J.: Detection of Web Service Substitutability and
Composability. In: WS-MaTe 2006: International Workshop on Web Services — Modeling
and Testing, Palermo, Italy, pp. 123–135. (2006)

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 352

22. Binder, R.: Testing Object Oriented Systems - Models, Patterns and Tools. Addison-
Wesley. (2000)

23. Church, J., Motro, A.: Learning Service Behavior with Progressive Testing. In: IEEE
SOCA’11, Irvine, USA. (2011)

24. Tsai, W., Zhou, X., Chen, Y., Bai, X.: On Testing and Evaluating Service-Oriented
Software. Computer, vol. 41, no. 8, pp. 40–46. (2008)

25. Zhu, H. Yufeng, Z.: Collaborative Testing of Web Services. IEEE Transactions on Services
Computing, vol. 5, no. 1, pp. 116–130. (2010)

26. Canfora, G., Di Penta, M.: Service Oriented Architectures Testing: A Survey. ISSSE 2006-
2008, vol. LNCS, no. 5413, pp. 78–105, springer. (2009)

27. Palacios, M. Garcia-Fanjul, J., Tuya, J.: Testing in Service Oriented Architectures with
Dynamic Binding: A Mapping Study. Information and Software Technology. Elsevier, vol.
53, no. 3, pp. 171–189. (2011)

28. Bozkurt, M., Harman, M. Hassoun, Y.: Testing Web Services: A Survey. Centre for
Research on Evolution, Search & Testing, King’s College, London, Tech. Rep. TR-10-01,
(2010)

13th Argentine Symposium on Software Engineering, ASSE 2012

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 353

