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Abstract. The development of an artificial pancreas for the treatment of insu-

lin-dependent diabetes is a big challenge for control theory. Many closed-loop 

algorithms have been widely evaluated for their ability to recreate, as closely as 

possible, glucose and insulin profiles observed in healthy individuals. Neverthe-

less, an artificial pancreas system also involves a critical necessity for supervi-

sion of the control loop functioning and the early detection of anomalies as well 

as performance deterioration. This work presents a performance monitoring ap-

proach using Bayesian surprise to fast detect functional degradation and guaran-

tee adequate control of blood glucose levels. Bayesian surprise is significantly 

affected by any deviation from desired operation in a controlled system, which 

allows its use for continuous glucose monitoring. 

Keywords:  Diabetes, optimal action selection, bayesian surprise, artificial 

pancreas, continuous performance monitoring. 

1 Introduction 

Type 1 diabetes mellitus (T1DM) is a disease that results in lifetime dependence on 

exogenous insulin due to the inability to naturally produce insulin in the pancreas. As 

the ability to produce insulin is completely lost, those with T1DM must receive regu-

lar insulin infusions to survive. The aim of glucose control using insulin infusions is 

to maintain normoglycemia, i.e., a blood glucose level (BGL) between 3.9 and 7.8 

mmol/L. Untreated T1DM primarily causes elevated blood glucose levels and acido-

sis. Intensive therapies managed by multiple daily injections and monitoring of BGL, 

has had success, but remains an annoyance to the subject and often results in poor 

control. In order to prevent these complications and achieve a better quality of life for 

diabetic patients, effective regulation of blood glucose is essential. The ideal treat-

ment for controlling BGLs would be the use of an artificial pancreas. Such fully au-

tomated system shown in Fig. 1 would consist on a glucose sensor to monitor the 

blood glucose continuously with sufficient reliability and precision, a controller to 

calculate the necessary insulin infusion rates by an appropriate feedback algorithm 

and an insulin infusion pump to supply the required amount of insulin into the blood. 
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Fig. 1. Closed-loop insulin delivery system 

To achieve an optimally-controlled system, a clinically implantable artificial pan-

creas requires well functioning and coordination of all their components (Jaremko and 

Rorstad, 1998). However, certain problems arise from different angles. Firstly, sub-

stances with absorption spectra similar to glucose incur complications due to obstruc-

tion of the infusion catheter or sensor unstable signal output. The same way, changes 

during the material lifecycle or maladjustment of operation strategy may lead to the 

degradation of control performance. A stabilized design of the integrated artificial 

pancreas should guarantee well functioning beyond uncertain changes in the loop 

behavior. These drawbacks make clear the necessity for supervision of the control 

loop and the early detection of performance deterioration.  

To this aim, optimal choice of actions is a fundamental problem to be addressed in 

order to characterize the behavior of an optimally-controlled system. The abstract 

setting for the latter can be framed as an agent (or controller) choosing actions over 

time, an uncertain dynamical system whose state is affected by those actions, and a 

performance criterion that the agent seeks to optimize (Todorov, 2009). The probabil-

istic controller has the power to reshape the system dynamics in any way it wishes. 

However, it pays a price for too much reshaping (Kárný and Guy, 2006). The key 

question for loop monitoring is how the “distance” from optimal reshaping can be 

characterized using realizations of a stochastic process bearing in mind optimal con-

trol of a nonlinear system. 

Optimal actions are defined by the stochastic dynamics            specifying the 

optimal transition probability from state    to state     under control action  . As the 

control system implements a given controlled-system dynamics            which 

deviates from optimal operation its performance necessarily degrades. The rationale 

behind            is the optimal cost-to-go function     , defined as the expected 

cumulative cost for starting at state   and acting optimally thereafter. It compresses 

all relevant information about the future and thus enables greedy computation of op-

timal actions. The value function      equals the minimum of the immediate cost 

plus the expected cost-to-go          from the next state    

                                         (1) 
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where the subscript indicates that the expectation is taken with respect to the transi-

tion probability distribution            induced by action  . Eq. 1 is fundamental to 

optimal control theory and is called the Bellman fundamental equation.  

The cost of reshaping the dynamics of a system can be measured with reference to 

the passive dynamics characterizing the behavior of the system in the absence of con-

trols. The latter behavior will usually be defined as a random walk in discrete domains 

and as a diffusion process in continuous domains. Note that the notion of passive 

dynamics is common in continuous domains but is rarely used in discrete domains. 

Let           denote the passive system dynamics. The control system can influence 

this dynamics in any way it wishes. However, it pays a price for loop reshaping be-

yond what is strictly necessary for optimal control. The minimum immediate cost for 

optimal reshaping can be estimated as follows 

                               
         

        
                                (2) 

The state cost      is an arbitrary function encoding how (un)desirable different 

states are and KL is the Kullback–Leibler divergence that measures the difference 

between the optimally-controlled dynamics and the passive one. Eq. 2 can be written 

for any arbitrary shaping associated with            which allows modeling the per-

formance loss for too much reshaping the passive dynamics as follows 

                                              (3) 

The KL divergence is also known as the relative entropy or the Kullback–Leibler 

(KL) entropy, which may be understood as a measure of the difficulty of discriminat-

ing between two distributions. Entropy is a quantity defined for any probability distri-

bution with properties that agree with the intuitive notion of information content and 

in stochastic optimal control can be directly related to the approximate solution of the 

Fokker-Planck-Kolmogorov equation (Plastino, et al., 1997; Günel, 2010). Also, 

Majda et al., (2002) have recently demonstrated that the relative entropy provides a 

significant measure of the information content of a prediction ensemble. More specif-

ically, entropy and predictability are intertwined concepts relevant for performance 

loop monitoring (Ghraizi et al., 2009).  

The distance between two distributions in Eq. 3 is increased by any deviation from 

optimal operation in process systems which makes it ideal for supervising Real-Time 

Optimization (RTO) and dynamic optimization schemes.  

The earlier bayesian definition for surprise proposed in Baldi et al. (2010) quanti-

fies how observing new data affects the internal beliefs that an observer may have 

over a set of hypotheses or models of the world. Surprise is measured using the dis-

tance between the posterior and prior distributions, based on the Kullback-Leibler 

divergence. Hence, Bayesian Surprise is perturbed by any disappearance as well as 

appearance of stimulus from operation in process systems, which makes it ideal for 

supervising RTO and dynamic optimization schemes. In these types of control tasks, 

performance cannot be characterized aptly enough by classical concepts such as min-
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imum variance (Owens and Doyle, 2001) or the predictability of error residuals 

(Ghraizi et al., 2009). 

2 Methodology 

The Bergman’s two-compartment minimal model parameterized as described in 

Acikgoz and Diwekar (2010) is used to model the glucose-insulin dynamics in a 

simulated patient with proper addition of an Ito’s stochastic process to capture the 

patient variability using the variance parameter  . Significant variability of relevant 

parameters among patients and within a given patient during the course of the day or 

week affects the insulin and glucose dynamics. Commonly this dynamics reveals 

some type of organization or behavior dissimilar from uniform randomness. The abil-

ity to identify patterns of behavior allows the characterization of the realizations of a 

stochastic process control, anomaly detection, decision making and driving actions.  

2.1 Bayesian Surprise 

Surprise is strong in real-life environments when an abruptly change causes a reeval-

uation of beliefs about the nature of the system. Because surprise exists only in the 

presence of uncertainty its essence must be probabilistic, using distributions to cap-

ture subjective expectations or beliefs over the current space of hypotheses or models 

M. These beliefs are updated, as data is acquired, transforming prior belief distribu-

tions into posterior belief distributions. The fundamental effect of the data D on the 

observer is to change the prior distribution P(M) into the posterior distribution 

P(M|D) via Bayes theorem  

        
      

    
     (4) 

The new observation D carries no surprise if it leaves the observer’s beliefs unaf-

fected, that is, if the posterior is identical to the prior; conversely, D is surprising if 

the posterior distribution resulting from observing D significantly differs from the 

prior distribution. Surprise is measured using the distance between the posterior and 

prior distributions, based on the Kullback-Leibler divergence.  

                                
 

 

    

      
   (5) 

To compute surprise, when the prior and the posterior distributions have the same 

functional form, we need to calculate general terms of the form 

                     (6) 

where       is the prior and       is the posterior. Surprise is then given by 

                     (7) 
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Consider a data set             containing N points. When    is real and data 

D has unknown mean and unknown variance, we have a family       
   of models 

with a prior 

              
                (8) 

product of a normal with a scaled Gamma distribution. Thus the prior and the posteri-

or have four parameters               satisfying (Gelman et al., 1995) 

    
  

    
   

 

    
   

         

         

     
      

           
   

    
       

  (9) 

where    and     are given by 

            

                      (10) 

The Bayesian surprise is subsequently computed as 

        
 

 
   

  

    
 

 

   
 

    

 
 
         

        
 
 

    
  

  
  

                
 

 
  

  

 
     

 

    
   

         
   

    
        

   
   (11) 

where    is the derivative of the logarithm of the Gamma function. For large values of 

N it yields to the approximation 

 

        
 

 
 

 

  
 

   

  
     

    
 

       
   

  

 
  

        

  
    (12) 

2.2 Closed-Loop Control Strategies 

The performance of closed-loop insulin infusion algorithms is assessed implementing 

Bergman minimal model describing insulin and glucose dynamics within a type I 

diabetes patient. The well-known Bergman’s two-compartment minimal model is 

used to model the glucose-insulin dynamics in a simulated patient with addition of an 

Ito’s stochastic process to capture the patient variability. Table 1 shows the schedule 

for carbohydrate intake.  
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Table 1. Meal times for carbohydrate intake. 

Times (min) 180 300 450 660 870 1020 

Carbohydrate (g) 47 16 63 31 63 31 

 

Gaussian Process Dynamic Programming (GPDP) is a generalization of Dynamic 

Programming (DP)/Value Iteration (VI) to continuous state and action spaces using 

fully probabilistic Gaussian Processes (GP) models (Deisenroth et al., 2009). GPDP 

describes value functions directly in function space by representing them using fully 

probabilistic GP models that allows accounting for uncertainty in simulation-based 

optimal control. An algorithm of the GPDP algorithm using the transition dynamics 

    and Bayesian active learning was presented by De Paula et al. (2012).  

Surprise theory can further be used in experiments where the prior is biased by an 

antecedent in such a manner that it is possible to represent a reference control policy 

as prior exposures to stimuli. Thereby, surprise can be helpful for quantitative com-

parison between different control schemes that may have different policies or priors. 

The optimal control policy obtained through the GPDP algorithm using  =0.10 is 

used as reference to assess the behavior of PID, expert and fuzzy schemes with re-

spect to maintaining normal BGLs during a meal. PID method is based on the work 

presented by Farmer et al. (2009) of a simple proportional plus integral plus deriva-

tive (PID) feedback control algorithm. The design of an Expert PID controller is 

based on the work developed in of Chee et al. (2003), upon a sliding scale method 

which prescribes insulin rates based on a lookup Table. The table has a continuous 

BGL partitioned into zones with linear increments of insulin rate, implementing a 

proportional action. If the current amount of insulin is not able to lower BGL, an inte-

gral control mechanism provides an increment of insulin through a variable which 

depends on a normalized weighted average of the latest BGLs. The derivative action 

is performed by a least squares regression technique to boost the insulin delivery dur-

ing a rapid increase of BGL. The insulin infusion dose is calculated upon proportion-

al, integral and derivative actions. The described expert algorithm is modified through 

the addition of fuzzy membership functions to obtain the proportional, integral and 

derivative actions (Susanto-Lee et al., 2008). The controller is based on Mamdani-

type architecture with defuzzification of the output variable implemented by the cen-

troid method. Proportional, integral and derivative actions are replaced by member-

ship functions and the infusion dose is calculated as in the expert scheme.  

3 Results 

Fig. 2 depicts 1-day simulation (1440 min.) of the glucose controlled dynamics using 

a generic control policy    obtained from the GPDP algorithm for blood glucose. 

Patient response variability is simulated by different values of the Ito’s variance pa-

rameter   and the carbohydrate intake given by Table 1. It is worth noting how the 

performance degrades as the variance parameter   is gradually increased. In this way, 
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model parameters are drastically changed so as to obtain a somehow sub-optimal 

control policy. 

BGLs obtained for PID, Expert and Fuzzy control schemes are shown in Fig. 3. Is 

notably the difference between each controlled glucose dynamic. While the controller 

obtained using the GPDP algorithm presents rather smooth actions, remaining 

schemes behave mostly as on-off control systems in response to the Ito’s process 

variability. 

As the variance parameter   increases the major variability causes glucose levels to 

fall outside of the normaglycemic range. This type of malfunctioning is notably cap-

tured by the Bayesian surprise as shown in Fig. 4. As previously stated, new glucose 

data carries no surprise if BGLs remain mainly constant leaving prior distributions 

unaffected, as in the case of variance  =0.10. Conversely, as   increases the arrival of 

surprising data modify prior/reference distributions causing larger surprise levels. 

Similar behaviors can be inferred from Fig. 5. The on-off response obtained from 

fuzzy and expert controllers is reflected by surprise levels. Note that PID scheme 

presents a stationary surprise value due to accumulation of constantly new surprising 

data. 

 

Fig. 2. Blood glucose profiles for different values of variance parameter  

 

Fig. 3. Blood glucose profiles for different control schemes using  =0.10 
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Fig. 4. Bayesian surprise for blood glucose profiles for an increment in  

 

Fig. 5. Bayesian surprise for blood glucose profiles using different control schemes 

 

Fig. 6. Surprise for a change in variance parameter  at min. 1440 

 

Fig. 7. Surprise for a change of control scheme at min. 1440 
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 (a) (b) (c) 

Fig. 8. Change in diet and control policy for the fuzzy scheme 

In Fig. 6 and Fig. 7 numerous 2-days simulations are performed. The reference 

control policy obtained through the GPDP algorithm using  =0.10 is switched to 

other control strategies starting from the second day. It is again noticeable how the 

degradation in control performance, represented by BGLs falling outside the 

normoglycemic range, causes major surprise levels. 

A special analysis for the fuzzy controller is presented in Fig. 8. In (a) the carbo-

hydrate intake described in Table 1 is reduced in a 50%. This event is followed by 

lower BGL and respectively reduced insulin infusion rates to maintain the current 

control policy. But even when this represents a new balance inside the system, it does 

not represent a change in the behavior of the control policy and hence there exist no 

significant variations in the surprise levels. Both remaining curves present miscon-

ducts in the second half. In (b) the controller behavior is affected by retuning the 

membership functions for proportional, integral and derivative actions. In (c) insulin 

infusions are limited to 35 mU/L. This fact causes saturation in the manipulated vari-

able and allows larger BGL, as represented by the two peaks in the surprise level. 

4 Final Remarks 

Based on Bayesian surprise and optimal action selection, a novel framework for 

control loop monitoring was presented. A unique property of the proposed approach is 

that can be used for automated supervision of Real-time Optimization (RTO) and 

dynamic optimization schemes working in uncertain environments.  

Since any deviation from a reference behavior is correlated to a measurement of 

surprise, this framework may be applied to a variety of real time socio-technical sys-

tems. Some related fields on which Bayesian surprise could be useful include salient 

object detection for computer vision applications (Vig et al., 2012) and performance 

assessment of industrial controllers (Ghraizi et al., 2009). Also, Bayesian surprise 

may be successfully used for intensity, color, and motion features identification in 

image and video processing  (Guo et al., 2010) as well as in sudden path deviation or 

lane change on autonomous vehicle systems  (Chew et al. 2008) .  
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