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Abstract. In this paper, a novel method for the identification of the
linear and nonlinear blocks in a Wiener model is presented. The method
combines Support Vector Machines and Least Squares Prediction Error
techniques. The identification is carried out by minimizing an augmented
cost function defined as the sum of the standard structural risk function
appearing in Support Vector Regression and the quadratic criterion on
the prediction errors associated to Least Squares estimation methods.
The properties of the proposed method are illustrated through simulation
examples.

1 Introduction

The global behavior of dynamical systems over the whole operating range is bet-
ter described by nonlinear models rather than by linear ones that are only able
to approximate the systems around a given operating point. One of the most
frequently studied classes of nonlinear models are the so-called block-oriented

models, which consist of the interconnection of Linear Time Invariant (LTI) sys-
tems and static (memoryless) nonlinearities. Within this class, Wiener models,
which consist of the cascade connection of an LTI block followed by a static
nonlinearity, have the capability of approximating, with arbitrary accuracy, any
fading memory time-invariant system, [1]. Wiener models have been success-
fully used to represent dynamical systems in different application areas such as
chemical processes [2], biological processes, signal processing, and control [3].

Several methods have been proposed in the literature for the identification
of Wiener models from input-output data. See for instance [4] and [2], for tech-
niques based on over-parametrization and least squares estimation, [5] and [6],
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for subspace methods, and [7] and the references therein, for maximum likelihood
estimation techniques.

In recent years, Support Vector Machines (SVM) regression techniques [8]
have been proposed for the identification of nonlinear models represented by ex-
pansions in terms of nonlinear mappings of the model inputs. These mappings
are expressed in terms of associated kernels, so that they do not need to be
explicitly computed. The estimates are obtained as the solution of a (convex)
Quadratic Programming (QP) problem. Good overviews on Support Vector Re-
gression techniques can be found in [9], and the recent tutorial paper in [10].
Several techniques based on Least Squares SVM have also been proposed for
the identification of Hammerstein models [11], and Wiener-Hammerstein mod-
els [12].

In this paper, a new Wiener model identification method combining SVM
regression and least squares estimation approaches is proposed. The method
delivers a kernel representation of the system, but also allows for the separate
identification of the linear and the nonlinear blocks in the Wiener model. The
method is formulated as the minimization of an augmented cost function, result-
ing in a convex QP problem for which convergence to the global solution can be
guaranteed.

The rest of the paper is organized as follows. In section 2, a parameterized
model of the Wiener system is derived. The SVM-based identification method
is presented in section 3, while the method based on Orthonormal Bases and
least squares estimation, introduced in [2], is briefly described in section 4. The
combined identification method is presented in section 5. Simulation examples
illustrating the properties of the proposed method are presented in section 6.
Finally, some concluding remarks are included in section 7.

2 Problem Formulation

In this paper, discrete time Wiener models consisting of the cascade connection
of a Linear Time Invariant (LTI) block followed by a static nonlinear block, are
considered. The Wiener model is schematically depicted in Fig. 1, where u ∈ R

is the scalar input signal, y ∈ R is the scalar measured output signal, ν ∈ R is
additive noise, v ∈ R is the intermediate variable (output of the LTI block), ỹ
is the output of the nonlinear block, N (·) is the nonlinear mapping representing
the static nonlinearity, and G(q−1) is the transfer function (in the backward-shift
operator3 q−1) of the LTI block.

The model can be described as follows:

v(n) = G(q−1)u(n),

ỹ(n) = N (v(n)), (1)

y(n) = ỹ(n) + ν(n).

3 The backward-shift operator q−1 is defined as: q−1x(n) � x(n− 1).
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G(q−1) N (·)
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Fig. 1. Wiener Model.

It is assumed that the LTI block is represented using rational orthonormal bases
as follows

G(q−1) =

p∑
�=1

b�B�(q
−1), (2)

where b� ∈ R are unknown parameters, and
{
B�(q

−1)
}∞
�=1

are rational orthonor-

mal bases4 on H2(T), the space of square integrable functions on the unit circle
T, which are analytic outside the unit disk.

In this paper, the rational Orthonormal Bases with Fixed Poles (OBFP)
studied in [13], that have the more common FIR, Laguerre [14], and Kautz
bases as special cases, are considered. The bases are defined as

B�(q) =

⎛
⎝

√
1− |ξ�|

2

q − ξ�

⎞
⎠ �−1∏

i=1

(
1− ξiq

q − ξi

)
, � ≥ 2 (3)

B1(q) =

√
1− |ξ1|

2

q − ξ1
, (4)

and they allow prior knowledge about an arbitrary number of system modes to
be incorporated in the identification process. By choosing the poles of the bases
(ξ1, ξ2, · · · , ξp), close to the (approximately known) dominant system poles, the
accuracy of the estimation can be considerably improved with respect to the
case of using FIR, Laguerre or Kautz bases, where the poles need all to be at
the same fixed location.

With this parametrization for the LTI block, the Wiener model can be rep-
resented as in the left diagram of Fig. 2.

The nonlinear block in the left diagram of Fig. 2 can also be parameterized
using basis functions in the form

N (v(n)) =
r∑

i=1

aigi(v(n)), (5)

4 The bases are orthonormal in the sense that

〈B�,Bk〉 = δ�k,

where δ�k is the Kronecker delta, and 〈·, ·〉 is the standard inner product in L2(T),
defined as

〈B�,Bk〉 �
1

2π

∫
π

−π

B�(e
jω)Bk(ejω)dω.
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where ai, i = 1, 2, · · · , r, are unknown parameters, and gi(·), i = 1, 2, · · · , r are
nonlinear basis functions.

An input-output equivalent representation of the parameterizedWiener model
in the left diagram of Fig. 2 is depicted in the right diagram of the figure, where
now all the unknowns are concentrated in the nonlinear static Multi-Input Single-
Output (MISO) block Ñ (·). The inputs x1, x2, · · · , xp of this block are computed
by filtering the actual input u with the basis functions B1(q

−1),B2(q
−1), · · · ,

Bp(q
−1) used to represent the LTI block.

B1(q
−1)

N (·)B2(q
−1)

Bp(q
−1)

u y

ν

+

+

+ +

+
+ v ỹ

b1

b2

bp

x1

x2

xp

G(q−1) Ñ (·)

B1(q
−1)

N (·)B2(q
−1)

Bp(q
−1)

u y

ν

+

+

+ +

+
+ v ỹ

b1

b2

bp

x1

x2

xp

Fig. 2. Left Diagram: Parameterized Wiener Model. Right Plot: Input-Output Equiv-
alent Parameterized Wiener Model.

The static nonlinearity can then be described as:

ỹ(n) = Ñ (x(n)), (6)

where x(n) �
[
x1(n), x2(n), · · · , xp(n)

]T
∈ R

p. Taking into account (5), equa-
tion (6) can be written as

ỹ(n) = Ñ (x(n)) = aTg(bTx(n)) = aT g̃(x(n)), (7)

where

a �
[
a1, a2, · · · , ar

]T
∈ R

r, (8)

b �
[
b1, b2, · · · , bp

]T
∈ R

p, (9)

g(·) �
[
g1(·), g2(·), · · · , gr(·)

]T
: R→ R

r, (10)

g̃(x(n)) � g(bTx(n)) : Rp → R
r. (11)

Finally, the measured output signal of the parameterized Wiener model in the
right diagram of Fig. 2 becomes

y(n) = aT g̃(x(n)) + ν(n) (12)

In the next section, SVM methods will be used to identify the static nonlinear
function Ñ (·) in terms of the nonlinear basis functions g̃(x(n)). Note the reader
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that the nonlinear functions g̃(x(n)) need not be explicitly known, but instead
they can be implicitly defined in terms of an associated kernel function (the
so-called kernel trick in the machine learning literature), [8]. A similar problem
is considered in [15].

3 SVM-based Identification

Equation (12) will be the departure point for the formulation of the estimation
problem within the framework of the Support Vector Machines approach. The
identification problem, in the so-called primal weight space, can be formulated
as follows:

Primal Formulation: Given a data set of measured inputs and outputs
{u(n), y(n)}Nn=1, the goal is to estimate a model of the form

y(n) = aT g̃(x(n)) + c+ ν(n), (13)

where c is a bias term, and {ν(n)} is an i.i.d. random process with zero mean
and finite variance. The unknowns in the model are a ∈ R

r, c ∈ R, and the order
r. �

Note the reader that, as pointed out in the previous section, since the filters
{Bi(q

−1)}pi=1 are specified, the internal variable x(n) associated with the input
sequence can be computed straightforwardly by filtering the input with the above
mentioned filters.

It is well known that the unknowns a and c can be determined by solving
the following constrained optimization problem [8]

min
a,c,ν

1

2
aTa+ γ

N∑
n=1

Lε(ν(n)) (14)

subject to y(n)− aT g̃(x(n)) − c− ν(n) = 0,

n = 1, · · · , N

where γ > 0 is a regularization constant providing a tradeoff between model
complexity (penalized by the first term in (14)) and fitting accuracy to the ex-
perimental data (penalized by the second term in (14)), and Lε(ν(n)) is Vapnik’s
ε-insensitivity loss function, defined as

Lε(ν(n)) =

{
|ν(n)| − ε if |ν(n)| ≥ ε
0 otherwise

(15)

The optimization problem states that the measured data are contained within an
ε-tube, by requiring |y(n)− aT g̃(x(n)) − c| ≤ ε, for a given ε-accuracy. Usually,
to allow for the possibility that some of the data points could be located outside
the ε-tube, slack variables ξn and ξ∗n are introduced, so that the optimization
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problem in (14) can be re-stated as follows

min
a,c,ξn,ξ∗n

1

2
aTa+ γ

N∑
n=1

(ξn + ξ∗n) (16)

subject to y(n)− aT g̃(x(n)) − c ≤ ε+ ξn,

−y(n) + aT g̃(x(n)) + c ≤ ε+ ξ∗n,

ξn, ξ
∗

n ≥ 0, n = 1, · · · , N

In most cases, the optimization problem (16) can be solved more easily in its
Dual Formulation using Lagrange multipliers, [9]. The associated Lagrangian
is given by

L(a, ξn, ξ
∗

n, αn, α
∗

n) =
1

2
aTa+ γ

N∑
n=1

(ξn + ξ
∗

n)−
N∑

n=1

(ηnξn + η
∗

nξ
∗

n)

+

N∑
n=1

αn

(
y(n)− aT g̃(x(n))− c− ε− ξn

)

+
N∑

n=1

α
∗

n

(
−y(n) + aT g̃(x(n)) + c− ε− ξ

∗

n

)
, (17)

where αn and α∗n are the Lagrange multipliers associated with the first two
sets of constraints in (16), and ηn and η∗n are the ones associated with the third
set of constraints in (16). The solution of the primal optimization problem in
(16) is given by the saddle point of the Lagrangian in (17), which should be
minimized with respect to a, ξn and ξ∗n, and maximized with respect to the
Lagrange multipliers αn, α

∗
n ≥ 0 and ηn, η

∗
n ≥ 0.

Introducing the positive definite kernels [8]

K(x(n),x(k)) � g̃T (x(n))g̃(x(k)) (18)

associated to the functions g̃(x(n)), the dual problem in the Lagrange multipliers
can be formulated as follows:

max
αn,α∗n

−
1

2

N∑
n,k=1

(αn − α∗n)(αk − α∗k)K(x(n),x(k))

−ε
N∑

n=1

(αn + α∗n) +

N∑
n=1

y(n)(αn − α∗n)

subject to
N∑

n=1

(αn − α∗n) = 0

αn, α
∗

n ∈ [0, γ], n = 1, · · · , N

which is a quadratic programming (QP) problem with box constraints, [10]. The
dual model representation is then given by

y(n) =

N∑
k=1

(αk − α∗k)K(x(n),x(k)) + c (19)
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Although the number of terms in the representation (19) equals the number of
data points N , only a reduced number of terms, corresponding to a small number
of vectors x(k), will have non vanishing coefficients (αk−α∗k). These vectors are
the so-called support vectors. The number of support vectors will depend on the
chosen values for ε and γ, and on the chosen kernel function. Commonly used
kernels are Gaussian Radial Basis Functions (RBF), polynomial kernels, and
MultiLayer Perceptrons (MLP) [9], [10]. In this paper, Gaussian RBF kernels
defined as:

K(x(n),x(k)) � exp(−‖x(n)− x(k)‖22/σ
2), (20)

where σ is the (user defined) kernel bandwidth, will be considered for the simu-
lation example in section 6.

4 Identification using OBFP

The Wiener model identification method based on orthonormal bases introduced
in [2] is briefly described in this section, since it will be combined in the following
section with the method described in section 3.

In [2], the transfer function of the linear block in the Wiener structure of
Fig. 1 is parameterized using orthonormal basis functions as in (2). On the other
hand, the inverse of the static nonlinearity N (·) is represented using nonlinear
basis functions as follows:

N−1(y(n)) =

r∑
i=1

difi(y(n)), (21)

where di, i = 1, 2, · · · , r, are unknown parameters, and fi(·), i = 1, 2, · · · , r are
nonlinear basis functions. Without loss of generality it is assumed that d1 = 1.

By equating the values of the intermediate variable (v(n)) computed from
the input and from the output in Fig. 1, the following linear regressor equation
is obtained

f1(y(n)) = −
r∑

i=2

difi(y(n)) +

p∑
�=1

b�B�(q
−1)u(n), (22)

which can be written in matrix form as

f1(y(n)) = φT (n)θ, (23)

where
θ � [d2, d3, · · · , dr, b1, b2, · · · , bp]

T , (24)

φ(n) �
[
−f2(y(n)), · · · ,−fr(y(n)),B1(q

−1)u(n), · · · ,Bp(q
−1)u(n)

]T
. (25)

Given an N -point data set of measured inputs and outputs {u(n), y(n)}Nn=1, an
estimate of the parameter vector θ can be computed by minimizing a quadratic
criterion on the prediction errors e(n) = f1(y(n)) − φT (n)θ. This is the well
known least squares estimate, which is given by

θ̂ = (ΦΦT )−1Φf , (26)
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provided the indicated inverse exists, and where

Φ �
[
φT (1);φT (2); · · · ;φT (N)

]T
, (27)

f � [f1(y(1)), f1(y(2)), · · · , f1(y(N))]
T
. (28)

The first (r − 1) components of vector θ̂ correspond to estimates of the
parameters di, i = 2, · · · , r, used to represent the inverse of the static nonlinearity
N (·), while the last p components correspond to an estimate of vector b used to
represent the LTI block in the Wiener model.

5 A combined method

The SVM-based identification method described in section 3 and the OB-based
method of section 4 can be combined by defining an augmented cost function
as the sum of the one appearing in (16) and the quadratic criterion associated
to the least squares estimation in section 4. The optimization problem of the
combined method can then be formulated as follows:

min
a,c,ξn,ξ∗n,θ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
aTa+ γ

N∑
n=1

(ξn + ξ∗n)︸ ︷︷ ︸
(I)

+
1

2

(
f − ΦT θ

)T (
f − ΦT θ

)
︸ ︷︷ ︸

(II)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(29)

subject to y(n)− aT g̃(x(n)) − c ≤ ε+ ξn,

−y(n) + aT g̃(x(n)) + c ≤ ε+ ξ∗n,

ξn, ξ
∗

n ≥ 0, n = 1, · · · , N

Note the reader that since term (I) in (29) depends on a, c, ξn, ξ
∗
n, but does not

depend on θ, and term (II) depends on θ but does not depend on a, c, ξn, ξ
∗
n,

then each term can be minimized separately.
In this way, the solution of the optimization problem (29) allows not only

to obtain the model kernel representation (19), but also an estimate of vector b
parameterizing the Z-domain transfer function of the linear block in the Wiener
model.

The support vectors x(k) in (19) can then be mapped forward to the cor-
responding intermediate variable v(k) (which, with some abuse of terminology,
will also be called support vectors) in the original parametrization in the left

diagram of Fig. 2, using the estimate b̂ of b, as follows:

v(k) = xT (k)b̂. (30)

Now, with the support vectors v(k) and y(k) associated to x(k), an explicit model
of the nonlinear functionN (·) can be obtained by, for instance, polynomial fitting
techniques5. This will be illustrated in the following section.

5 Any smooth function in an interval can be represented with arbitrary accuracy by
a polynomial of sufficiently high order.
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6 Simulation Example

The properties of the identification methods introduced in Sections 3, 4 and 5
are illustrated in this section through a simulation example.

It is assumed that the real system has a Wiener structure like the one in Fig.
1, where the linear block is represented by a Z-domain transfer function of the
form

G(z) =
0.5z2 + 0.35z − 0.75

z3 + 0.9z2 + 0.15z + 0.002
, (31)

and the nonlinear static block is characterized by a saturation-type function
given by

N (v) = tanh(v). (32)

For the purposes of identification the system was excited with a Gaussian dis-
tributed, zero mean, unit variance random signal, while the output was corrupted
with additive zero mean colored noise with (energy density) spectrum

Φν(ω) =
0.0016

1.04− 0.4 cosω
. (33)

The identification algorithm introduced in Section 3 was employed to estimate
a Wiener model using the first (N = 1000) samples of observed input-output
data. The remaining 1000 samples were used for validation purposes.

To evaluate the influence that the location of the poles of the basis functions
used to describe the linear block in the Wiener model, have on the prediction
accuracy of the estimated models, identification experiments with different pole
locations were carried out. The results are summarized in Table 1, where the
prediction accuracy of the estimated models is quantified by the Best FIT6

between the measured and estimated outputs (validation data). The number of
support vectors (SV) for each experiment is also shown in the table. For these
experiments, the design parameters of the SVM method were set to: ε = 0.08,
γ = 2000, σ2 = 1. As can be observed from Table 1, as the poles of the bases
approach the actual poles of the plant, the estimation accuracy is improved, and
the number of support vectors is decreased, for the same model order of the
linear block. The best performance corresponds to the last row (in bold) of the
table, where the poles of the bases exactly match the actual poles.

To investigate how does the size of the ε-tube affect the estimation accuracy
and the resulting model complexity (number of support vectors), identification
experiments with different values of ε in the range [0.01, 0.2], were carried out.

6 The Best FIT is defined as

FIT =

(
1−

‖Y − Yv‖

‖Yv − ymean‖

)
× 100,

where Y is a vector with the output of the model when excited with the validation
input data, Yv is a vector with the validation output data, and ymean is the mean
value of the validation output.
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Table 1. Prediction accuracy and number of support vectors SV, for different bases,
pole locations and model orders of the linear block. (SVM-based identification).

Bases Pole location p FIT [%] SV
Laguerre {-0.02} 3 29.1022 822
Laguerre {-0.23} 3 63.5778 609
Laguerre {-0.7} 4 63.6714 656
Laguerre {-0.7} 3 63.7273 632
OBFP (app.) {-0.7, -0.23, -0.02} 3 89.5159 121
OBFP (ex.) {-0.6854, -0.2, -0.0146} 3 90.4881 72

The results are shown in left plots of Fig. 3, where the best FIT as a function of ε
(top plot), and the number of Support Vectors as a function of ε (bottom plot) are
displayed. As expected, both the estimation accuracy and the model complexity
decrease as ε increases. For these experiments, the remaining design parameters
of the SVM-based identification method were set to: γ = 2000, σ2 = 1, and poles
of the bases exactly matching the actual poles.
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Fig. 3. Left Plot: Top: Best FIT vs. ε, Bottom: Number of SV vs. ε. Right Plot: Top:
Best FIT vs. γ, Bottom: Number of SV vs. γ. (ε = 0.08, σ2 = 1, poles of the bases
matching actual poles)

To investigate how does the regularization parameter γ affect the estimation
accuracy and the resulting model complexity, identification experiments with
different values of γ in the range [0.001, 10000], were carried out. The results
are shown in the right plots of Fig. 3, where the best FIT as a function of γ
(top plot), and the number of Support Vectors as a function of γ (bottom plot)
are displayed. In this case, the estimation accuracy increases and the model
complexity decreases as γ increases.

The same input-output data were used to estimate Wiener models using
the identification algorithm based on orthonormal bases described in section 4.
Identification experiments using the same bases, pole locations and model orders
as the ones listed in Table 1 were performed, and the prediction accuracy of the
estimated models was quantified by means of the Best FIT between the measured
and estimated outputs (validation data). The results are summarized in Table
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2. The number of estimated parameters (#P) is also shown in Table 2. In this
case, the nonlinear basis functions fi(y) in (21) were chosen as the polynomials:
f1(y) = y, f2(y) = y3 and f3(y) = y5, (r = 3).

Table 2. Prediction accuracy and number of estimated parameters (#P), for different
bases, pole locations and model orders of the linear block. (OB-based identification).

Bases Pole location p FIT [%] #P
Laguerre {-0.02} 3 -51.8749 5
Laguerre {-0.23} 3 50.4458 5
Laguerre {-0.7} 4 49.7030 6
Laguerre {-0.7} 3 50.4786 5
OBFP (app.) {-0.7, -0.23, -0.02} 3 88.0209 5
OBFP (ex.) {-0.6854, -0.2, -0.0146} 3 89.9626 5

Also here, and as it can be observed from Table 2, as the poles of the bases
approach the actual poles of the plant, the estimation accuracy is improved, for
the same model order of the linear block. The best performance corresponds to
the last row (in bold) of the table, where the poles of the bases exactly match
the actual poles. This performance is comparable to the one obtained with the
SVM-based method (last row in Table 1). Comparing the results in Tables 1 and
2, it can be observed that the SVM-based method seems to be more robust to
changes in the location of the poles than the OB-based method.

The true (blue solid line) and the OB-based Estimated (black-dashed line)
nonlinearities are plotted in Fig. 4, where a good agreement between them can
be observed. Also included in Fig. 4 are the estimated nonlinearity using the
combined method described in section 5 (green dash-dotted line), and the cor-
responding support vectors (red crosses). The estimates in Fig. 4 were obtained
with the design parameters corresponding to the last row in Tables 1 and 2. The
estimated transfer function of the linear block is given by (compare to (31)):

Ĝ(z) =
0.3944z2 + 0.2767z − 0.5929

z3 + 0.9z2 + 0.15z + 0.002
. (34)

7 Conclusions

A new method for the identification of the linear and nonlinear blocks in a
Wiener model has been presented in this paper. The identification is carried
out by minimizing an augmented cost function defined as the sum of the stan-
dard structural risk function appearing in Support Vector Regression and the
quadratic criterion on the prediction errors associated to Least Squares estima-
tion methods. The resulting optimization problem is a convex QP problem for
which the convergence to the global solution is guaranteed. The proposed algo-
rithm not only delivers a kernel model of the system but also separate models
for the linear and nonlinear blocks in the Wiener structure. The simulation ex-
amples show that the proposed method has a performance comparable to that
of other state-of-the-art techniques.
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Fig. 4. True nonlinearity (blue solid line), OB-based Estimate (black dashed line),
Combined Method Estimate (green dash-dotted line) and the corresponding Support
Vectors (red crosses).
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