
Automated Task Rescheduling using Relational Markov
Decision Processes with Logical State Abstractions

Jorge Palombarini1, Ernesto Martinez2

1 GISIQ(UTN) - Fac. Reg. Villa María, Av. Universidad 450, 5900, Villa María, Argentina.

jpalombarini@frvm.utn.edu.ar
2 INGAR(CONICET-UTN), Avellaneda 3657, S3002 GJC, Santa Fe, Argentina.

ecmarti@santafe-conicet.gob.ar

Abstract. Generating and representing knowledge about heuristics for repair-
based scheduling is a key issue in any rescheduling strategy to deal with unfore-
seen events and disturbances. Resorting to a feature-based representation of
schedule states is very inefficient and generalization to unseen states is highly
unreliable whereas the acquired knowledge is difficult to transfer to similar
scheduling domains. In contrast, first-order relational representations enable the
exploitation of the existence of domain objects and relations over these objects,
and enable the use of quantification over objectives (goals), action effects and
properties of states. In this work, a novel approach which formalizes the re-
scheduling problem as a Relational Markov Decision Process integrating first-
order (deictic) representations of (abstract) schedule states is presented. The
proposed approach is implemented in a real-time rescheduling prototype, allow-
ing an interactive scheduling strategy that may handle different repair goals and
disruption scenarios. The industrial case study vividly shows how relational ab-
stractions provide compact repair policies with less computational efforts.

Keywords. Rescheduling, Relational Markov Decision Process, Manufactu-
ring Systems, Reinforcement Learning, Abstract States.

1 Introduction

In the context of manufacturing systems established production planning and control
systems must cope with unplanned events and intrinsic variability in dynamic envi-
ronments where difficult-to-predict circumstances occur as soon as plans are released
to the shop-floor [1]. Equipment failures, quality tests demanding reprocessing opera-
tions, rush orders, delays in material inputs from previous operations and arrival of
new orders give rise to uncertainty in real time schedule execution, which is a com-
plex phenomenon that cannot be addressed exclusively through the inclusion of un-
certain parameters into problem statement [2]. Moreover, including additional con-
straints into global scheduling models significantly increases problem complexity and
computational burden, of both the schedule generation and rescheduling tasks, which
are (in general) NP-hard [3]. As a result, reactive scheduling is heavily dependent on
the capability of generating and representing knowledge about strategies for repair-

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 59

based scheduling in real-time, producing satisfactory schedules rather than optimal
ones in reasonable computational time.

Exploiting peculiarities of the specific problem structure is the main aim of the vast
majority of the scheduling research prioritizing schedule efficiency using a mathemat-
ical programming approach, in which the repairing logic is not clear to the end-user
[4,5,6]. More recently, Li and Ierapetritou [7] have incorporated uncertainty in the
form of a multi-parametric programming approach for generating rescheduling
knowledge for specific events. Also, Gersmann and Hammer [8] have developed an
improvement over an iterative schedule repair strategy using Support Vector Ma-
chines. However, the tricky issue is that resorting to a feature-based representation of
the schedule state is very inefficient, generalization to unseen states is risky and
knowledge transfer to unseen scheduling domains is not feasible [9]. Therefore, at the
representation level, it is mandatory to scale up towards a richer formalism that allows
the incorporation of learning/reasoning skills [10]. In that sense, Relational Markov
Decision Processes are a natural choice because they can be solved by means of simu-
lating state transitions and enabling the integration of first-order relational representa-
tions. Thereby, exploitation of the existence of domain objects and relations (or prop-
erties) over these objects, quantification over objectives (goals), action effects and
properties of schedule states, abstraction and generalization processes can be carried
on in a straightforward way.

In this work, a novel real-time rescheduling approach which resorts to a Relational
Markov Decision Process to integrate (deictic) representations of (abstract) schedule
states with repair operators is presented. To learn a near-optimal policy for reschedul-
ing using simulations, an interactive repair-based strategy bearing in mind different
goals and scenarios is proposed. To this aim, domain-specific knowledge for reactive
scheduling is developed using two general-purpose algorithms already available:
TILDE and TG [11]

2 Relational Markov Decision Processes

Relational Markov Decision Processes (RMDP), are an extension from standard
MDPs based on relational representations in which states correspond to Herbrand
interpretations [10], and can be defined formally as follows [12]:

Definition 1. Let P = {p1/α1, . . . , pn/αn} be a set of first order predicates with their
arities, C = {c1, . . . , ck} a set of constants, and let A’ = {a1/α1, . . . , am/αm} be a set
of actions with their arities. Let S’ be the set of all ground atoms that can be con-
structed from P and C, and let A be the set of all ground atoms over A’ and C. A Rela-
tional Markov Decision Process (RMDP) is a tuple M = ‹S, A, T, R›, where S is a
subset of S’, A is defined as stated, T: S×A×S → [0, 1] is a probabilistic transition
function and R:S×A×S → IR a reward function.

The difference between RMDPs and MDPs is the definition of S and A, whereas T
and R are defined as usual. Formulating the rescheduling problem as a RMDP enables
to rely upon relational abstractions of the state and action spaces to reduce the size of
the learning problem. RMDP offers many possibilities for generalization due to the
structured form of ground atoms in the states and actions spaces, which share parts of

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 60

the problem structure (e.g. constants). An RMDP can be solved using a Relational
Reinforcement Learning (RRL) algorithm, where schedule states are represented as
sets of first-order logical facts, and the learning algorithm can only see one state at a
time. Repair operators are also represented relationally as predicates describing each
feasible action in a given schedule state as a relationship between one or more varia-
bles, as it is shown in Example 1 below. RRL algorithms are concerned with rein-
forcement learning in domains that exhibit structural properties and in which different
kinds of related objects, namely tasks and resources exist [11,12,13]. This is usually
characterized by a large and possibly unbounded number of different states and ac-
tions as it is the case of planning and scheduling.

Example1.
state1={totTard(53.86),maxTard(21.11),avgTard(3.85),totaWIP(46.13),resLo
ad(0,30.39),resLoad(1,47.93),resLoad(2,21.68),tRatio(3.34),invRatio(6.06
),resTard(0,6.12),resTard(1,39.57),resTard(2,8.16),totalCT(3),focalRSwap
,focalLSwap,focalAltRSwap,focalAltLSwap,matArriv(0),lTard(0),rTard(6.075
),focalTask(task(task14,1.1,11.05,9.95,a,0.05,11,995)),resource(0,extrud
er,[task(task13,0,1.1,1.1,a,0,11,110),task(task14,1.1,11.05,9.95,a,0.05,
11,995)...]),resource(1,extruder,[task(task11,0,5.66,5.66,c,0,15,849),ta
sk(task6,5.66,7.26,1.6,c,0,10,240)...]),resource(2,extrudr,[task(task12,
0,2.31,2.31,b,0,18,346))...};
action1=action(leftJump(task(task14),task(task13))).

 Fig. 1. Adapted RRL algorithm for learning to repair schedules through schedule state transi-

tion simulation (Algorithm 1) and state abstraction (Algorithm 2).

Rather than using an explicit state−action Q-table, RRL stores the Q-values in a logi-
cal regression tree [14]. The relational version of the Q-learning algorithm is shown in
Fig. 1 (Algorithm 1). So, BK is loaded before the training process starts and for each
trial after the Q-function hypothesis has been initialized, the RRL algorithm starts

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 61

running learning episodes [11, 15]. During each episode, all the visited abstract states
and the selected actions are stored, together with the rewards related to each visited
(abstract state, action)-pair. At the end of each episode, when the system ends up in a
goal state, it uses reward back-propagation and the current Q-function approximation
to compute and update the corresponding Q-value approximation for each encoun-
tered (abstract state, action)-pair in the episode. The algorithm presents the set of
(abstract state, action, qvalue)-triplets encountered in each learning episode to a rela-
tional regression engine, which will use this set of Examples to update the current
regression tree for the Q-function. In order to accelerate and generalize the learning
process an abstract state induction is performed based on ground schedule states. Be-
cause of the relational representation of states and actions and the inductive logic
programming component of the RRL algorithm, there must exist some body of back-
ground knowledge (BK) which is generally true for the entire domain to facilitate
induction of abstract states and repair policy in the form of Prolog rules. The compu-
tational implementation of the RRL algorithm has to deal successfully with the rela-
tional format for (states, actions)-pairs in which the examples are represented and the
fact that the learner is given a continuous stream of (state, action, q-value)-triplets to
learn predicting q-values for (state, action)-pairs during training.

TILDE relational regression algorithm [13,15,16] is used by the prototype to in-
duce the membership function 𝜓 which allows obtaining the abstract-state corre-
sponding to the ground state. Such function is used by Algorithm 2 in Fig. 1 which
carries on this task. TG algorithm is used for accumulating simulated experience in a
compact way at the end of each learning episode, in a yet readily available decision-
making rule for generating a sequence of repair operators that are available at each
abstract schedule state s

2.1 Retr ieving exper ience and member ship values using logical decision trees

All accumulated experience and the membership function 𝜓 are stored in a first-order
decision tree (FODT), in which every internal node contains a test which is a conjunc-
tion of first-order literals (See Fig. 2). Also, every leaf (terminal node) of the tree
involves a real valued prediction. Prediction with first-order trees is similar to predic-
tion with propositional decision trees: every new instance is sorted down the tree.

Fig. 2. An example of a part of a relational regression tree (left) and a detail of two from ten

possible derived Prolog rules (right), without root query.

….
….

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 62

If the conjunction in a given node succeeds (fails) for that instance, it is propagated
to the left (right) subtree. This FODT is converted by the prototype in a set of Prolog
rules that are used in execution time to predict Q-values and to select repair operators
accordingly. The TG algorithm starts with the tree containing a single node, all exam-
ples and the Root Query, and then recursively completes the rest of nodes. It is im-
portant to define correctly the Root Query since it is the first node of the tree upon
which further refinements will be performed in the “Update 𝑞�” line of Algorithm 1.
Furthermore, the Root Query generates a set of basic variables used by the TG to
execute several tests that are needed to build the rest of the regression tree. As a con-
sequence, in the derived set of Prolog rules, the Root Query is present in the first part
of the antecedent of each one of them. In this work, the query defined as a root is
showed in the Example 2:

Example 2. root((focal_Task(T), totalTardiness(W),
maxTardiness(X), avgTardiness(Y), totalWorkInProcess(Z),
tardinessRatio(A), inventoryRatio(B), totalCleanoutTime(F),
focalTardiness(G), action_move(Cons,T,SF))).

In order to complete a node, the algorithm first tests whether the example set in the
node is sufficiently homogeneous. If it is, the node is turned into a leaf; if it is not, all
possible tests for the node are computed and scored using heuristics. Theses possible
tests are taken from the background knowledge definition, and can be relational facts,
queries about the value of a discretized variable, or more complex predicates that can
involve several rules. Then, the best test is added into the node, and two new nodes
are incorporated to the tree: the left one contains those examples for which the test has
been successful and the right one those for which the test fails. The procedure is then
called recursively for the two sub-nodes. Once the instance arrives to a leaf node, the
value of that leaf is used as the prediction for that instance. The main difference be-
tween this algorithm and traditional decision tree learners relies in the generation of
the tests to be incorporated into the nodes. To this aim, the algorithm employs a re-
finement operator ρ that works under θ-subsumption. Therefore, the refinement opera-
tor specializes a query Query (a set of literals) by adding literals lits to the query
yielding Query, lits. An example for the query ← pre cedes(X,Y) could be ← pr e-
cedes(X,Y), orderOfProduct(X,Product), and ← precedes(X,Y),
task_in_resource(X,Resource), in which orderOfProduct/2 and task_in_resource/2 can
be defined in the set of facts that define the schedule state or might be derived using
BK rules. Several heuristic functions can be used to determine the best tests, and to
decide when to turn nodes into leaves. The function employed by the TG algorithm is
based on the information gain, which measures the amount of information gained by
performing a particular test [13].

3 Abstraction and Generalization in Rescheduling Domains

The drawbacks and limitations of attribute-value (propositional) representations in
learning a rescheduling policy discussed in previous sections are solved by our pro-
posal by resorting to relational (or first-order) deictic representations. This approach,
relies to a language for expressing sets of relational facts that describe schedule states

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 63

and repair actions in a compact and logical way; each state is characterized by only
those facts that hold in it, which are obtained applying a hold(State) function. Formal-
ly, first-order representations are based in a relational alphabet Σ, which consists of a
set of relation symbols P and a set of constants C. Each constant c ∈ C denotes an
object (i.e. a task or resource) in the domain and each p/a ∈ P denotes either a proper-
ty (or attribute, i.e. task tardiness) of some object (if a=1) or a relation between ob-
jects (for example, if a > 1, e.g. precedes(task1,task2)).

To represent structured terms in the schedule domain, e.g., re-
source(1,extruder(1),[task1,task2,task5]), the relational alphabet is extended with a set
of function symbols or functors F = {f1/α1, . . . , fk/αk} where each fi (i = 1 . . . k) de-
notes a function from Ck to C, where α is called the “arity” of the functor, and fixes
the number of its arguments, e.g. precedes/2, task/5, averageTardiness/1,
focalRightSwappability/0, among others. The prototype implements the concept of
“learning from interpretations” in [13], so in this notation, each (state, action) pair
will be represented as a set of relational facts, which is called a relational interpreta-
tion. In addition to a relational abstraction, a deictic representation for describing
schedule states and repair operators is proposed as a powerful alternative to scale up
RRL in rescheduling problems. Deictic representations deal naturally with the varying
number of tasks and resources in the planning world by defining a focal point for
referencing objects (tasks and resources) in the schedule. This focal point is repre-
sented by a functor called focal/1, which takes one parameter to specify a task that
fixes the repair scope and objectives. Such task is selected using different criteria,
depending on the type of event which generates the disruption. Once this focal task is
known, other facts that describe the schedule state and are relevant for repairing it can
be established, such as leftTardiness/1 or altRightTardiness/1, among others. So, to
characterize transitions in the schedule state due to repair actions, a deictic representa-
tion resorts to constructs such as: i) The first task in the new order, ii) The next task to
be processed in the affected resource, and iii) Tasks and due date in a rush order at the
top of the priority list.

3.1 Abstract Schedule State Spaces

Relational representations of schedule states and repair operators are symbolic in na-
ture. Therefore, to perform the process of generalizing and abstracting over them to
speed up learning, the TG algorithm is used in combination with the Algorithm 2
shown in Fig. 1 which is based in the concept of first-order abstractions of version
spaces. This feature has been implemented following the Policy Iteration using Ab-
straction and Generalization Techniques (PIAGeT) principle [12], whose instantiation
is given in Fig. 3. The base level of the figure consists of the original, flat RMDP. The
abstraction level defines a representation of this RMDP that abstracts parts of the
learning process, value functions and repair policy. The relational representation can
be viewed as a particular homomorphism of the flat model. This abstraction level is
given a priori as a particular bias, based on background knowledge and assumptions
and restrictions about the domain (e.g. BK also might specify constraints such as BK:
∀XY(precedes(X,Y) → X /= Y), saying that if task X precedes task Y, they should
be different objects). Relational ground states are aggregated into abstract states using

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 64

TILDE, which uses an inductive logic programming approach for generating logical
regression trees in an off-line way.

Fig 3. Abstraction and Generalization in rescheduling domains using PIAGeT principle [12].

Q-values can be learned for all abstract states and the derived abstract policy maps

these abstract schedule states into repair actions aiming at achieving a given repair
goal or objective. There are two interacting processes in our proposal: the base layer
is the structural part for which an abstract layer is defined and learned, and the top
layer that is responsible for learning a repair policy. Finally, the Structural Adaptation
component is added so as to the defined structures are allowed to change as the learn-
ing process incorporates more training examples via simulation or through knowledge
provided by experts in the form of BK rules.

Example 3. ∀A,B,C,D(maxTard(A), precedes(B,C), precedes(C,D), A>57.8) is an Ab-
stract State that denotes the set of schedules states in which the maximum tardiness A
is greater than 57.8, where a task B precedes a task C, who in turns precedes the task
D. Note that in this case, the task denoted by C must be the same in all cases where it
appears.

As can be seen in Example 3, each abstract state models a set of interpretations of
the underlying learning process (RMDP), and defines which relations should hold in
each of the ground states it covers. Formally, this is expressed as a conjunction ≡ 1∧.
. .∧ m of logical atoms, e.g., a logical query. The use of variables makes room for
abstracting over specific domain objects as well. Thus, an abstract state is basically a
logical sentence, specifying general properties of several states visited during learning
through simulation of abstract state transitions. The action-value Q-function relies on
a set of abstract states, which together encode the kind of rescheduling knowledge
learned through state transition simulation in a compact and formal way, which can be
used in real time to repair plans whose feasibility have been affected by disruptive
events. Abstract state spaces compactly specify in a logical way a Relational Markov
Decision Process state space S as a set of abstract states, and can be defined formally
as follows [12]:

Flat RMDP

Relational ground schedule states

Abstract RMDP

Learning Process

Relational abstract schedule statesAbstract
State

Induction

Structural
Adaptation

Q (s,a)
Repair
Policy π

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 65

Definition 2. Let Γ be a logical vocabulary and let 𝔸 be the set of all Γ-structures 𝒜, a
multi-par t abstraction (MPA) over 𝔸 is a list ⌊�𝜑1, … ,𝜑𝑛⌉�, where each 𝜑𝑖 (i =1 . . . n)
(called a par t) is a formula. A structure 𝒜 ∈ 𝔸 is covered by an MPA iff there exists
a part 𝜑𝑖 (i =1 . . . n) such that 𝒜 |= 𝜑𝑖. An MPA is a partition iff for all structures
there is exactly one part that covers it. An MPA μ over Σ induces a set of equivalence
classes over Σ, possibly forming a partition. MPAs are to be seen as sets. In other
words, μ is a compact representation of a first-order abstraction level over Σ. An ele-
ment σ ∈ Σ is covered by a part <𝜑> iff σ |=𝜑. Then, an abstract schedule state
space is an MPA ⌊�𝜑1, … ,𝜑𝑛⌉�, where each 𝜑𝑖 (i=1…n) is an abstract schedule state.
An abstract schedule state action space is an MPA ⌊�〈𝜑1,𝛼1〉… , 〈𝜑𝑛,𝛼𝑛〉⌉�, i.e. a
product-MPA over the schedule state-action space 𝑆 × 𝐴.

Definition 3. Let M = ‹S, A, T, R› be an RMDP. An abstract RMDP M is a structure
‹Z, A, T, R›. The abstract schedule state space Z = {Z1, . . . ,Zn} is a partition of the
schedule state space S. Typically, |S| >> |Z|, offering a solution to many of the prob-
lems with large state spaces described previously. Let ψ denote the membership func-
tion defined as ψ : S → Z, which maps each schedule state in the original space S to
one of the sets in Z. Now each partition in Z is defined as Zi = {s | ψ(s) = Zi}. For all i,
j = 1. . . n, Z satisfies the following properties: i) 𝑍𝑖 ⊆ 𝑆, ii) ⋃ 𝑍𝑖 𝑖 = 𝑆, and iii) Zi ∩ Zj
= ∅, if i = j. Since we do not consider action-space abstraction, both M and M share
the same action set A. A transition function and a reward function for M can now be
defined in terms of T and R.

R(Zi, a) = �ω(s) ∙ 𝑅(s, a)
sϵZi

 (1)

T�Zi, a, Zj� = � � ω(s) ∙ 𝑇(s, a, s′)
s′ϵZjsϵZi

 (2)

To ensure that T and R are well-defined, a weighting function 𝜔 ∶ 𝑆 → [0,1] has

been added, where for each 𝑍𝑖𝜖 𝑍,∑ 𝜔(𝑠) = 1𝑠𝜖𝑍 . The weighting 𝜔(𝑠) expresses how
much the state s contributes to the abstract state ZI = ψ(s). The function 𝜔 is chosen to
be in proportion to the state occupancy distribution using the TG algorithm online.
Therefore, we learn an abstract policy Π which is defined as Π : Z → A such that
π(s, a) = Π(ψ(s), a), for all s ∈ S, a ∈ A. So, in this approach it is necessary to induce
an abstract schedule state space Z for which the Q-values and policies are learned. Q-
learning on an abstract schedule state space is performed by updating an abstract ac-
tion-value function based on the (ground) transition (st, at, rt, st+1) as follows:

𝑄(𝜓(𝑠𝑡), at): = 𝑄(𝜓(𝑠𝑡), at) + α(rt + γ ∙ maxa′𝑄(𝜓(𝑠𝑡+1), a′) − 𝑄(𝜓(𝑠𝑡), at)) (3)

In this way, Q-values for abstract states are learned, and these Q-values are shared
among all states that are members of the same abstract state (See Algorithm 1 in Fig.
1). Based on the presented RRL approach, the prototype generates the definition of
the Q-function from a set of examples in the form of abstract state-action-value tu-
ples, and dynamically makes partitions of the set of possible schedules states. These

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 66

partitions are described by a kind of abstract schedule state, that is, a logical condi-
tion, which matches several real schedule states like the one in Example 3. The rela-
tional Q-learning approach sketched above thus needs to solve two tasks: finding the
right partition and learning the right values for the corresponding abstract state-action
pairs. The abstract Q-learning algorithm depicted in Fig. 1 starts from a partition of
the state space in the form of a decision list of abstract state-action pairs
�(𝑆1,𝐴1), … , (𝑆𝑛,𝐴𝑛)� where is assumed that all possible abstract actions 𝐴𝑖 are listed
for all abstract states 𝑆𝑖. Each abstract state 𝑆𝑖 is a conjunctive query, and each ab-
stract action 𝐴𝑖 contains a possibly variabilized action. The relational Q-learning
algorithm now turns the decision list into the definition of the qvalue/1 predicate, and
then applies Q-learning using the qvalue/1 predicate to rank state-action pairs. This
means that every time a concrete state-action pair (s, a) is encountered, a Q-value q is
computed using the current definition of qvalue/1, and then the abstract Q-function,
that is, the definition of qvalue/1 is updated for the abstract state-action pair to which
(s, a) belongs, which is performed using ψ. That is, the abstract state 𝑆 aggregates a
set of state atoms into an equivalence class [𝑆]. Using this powerful abstraction,
schedule states are characterized by a set of common properties and the corresponding
repair policy expresses takes advantage of the problem structure and relations among
objects in the schedule domain [9]. As a result, the rescheduling policy may be reused
in somewhat similar problems were the same relations apply, and without any further
learning. As only fully observable worlds are considered, rescheduling knowledge is
only due to abstracting schedules using relationships between world objects. An ab-
stract state 𝑆 covers a ground state s iff s |= 𝑆, which is tested using θ-subsumption.

4 Industr ial Case Study

An example problem proposed in [17] is considered to illustrate our approach for
automated task rescheduling. It consists of a batch plant which is made up of 3 semi-
continuous extruders that process customer orders for four products (A,B,C and D).
Each extruder has distinctive characteristics, so that not all the extruders can process
all products. Additionally, processing rates depend on both the resource and the prod-
uct being processed. For more detail, set-up times required for resource cleaning have
been introduced, based on the precedence relationship between different types of final
products. Processing rates and cleanout requirements are detailed in [17].

The prototype application has been implemented in Visual Basic.NET 2008 De-
velopment Framework 3.5 SP2 and SWI Prolog 6.0.2 running under Windows Vista.
Also, the TILDE and TG modules from the ACE Datamining System developed by
the Machine Learning group at the University of Leuven [16] have been used. The
prototype admits two modes of use: training and consult. During training it learns to
repair schedules through simulated transitions of schedule states, and the generated
knowledge is encoded in the Q-function. Exploitation of rescheduling knowledge is
made in the consult mode. The disruptive events that the system can handle are the
arrival of a new order/rush order to the production system, delay or shortage in the
arrival of raw materials, and machine breakdown. Logical queries are processed by
the Prolog wrappers QManager .dll and OperatorManager .dll, which made up a
transparent interface between the .NET agent and the relational repair policy and ob-

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 67

jects describing schedule states. Before starting a training session the user must define
through a graphical interface, the value of all simulation and training parameters,
related to Initial schedule condition, Learning Parameters and Goal State Definition.
The latter is a key parameter that has to be defined before starting simulation since it
establishes the desired repair goal. Training a rescheduling agent can be carried out by
selecting one of three alternative goals, which is selected through an option list: Tar-
diness Improvement, Stability or Balancing. For example, in the case of Tardiness
Reduction, credit assignment has the particularity of penalizing sequences of repair
actions leading to a final state where the total tardiness is greater than the correspond-
ing one for the initial schedule.

Order attributes correspond to product type, due date and size. In learning to insert
an order, the rescheduling scenario is described by: i) arrival of an order with given
attributes that should be inserted into a randomly generated schedule state, and ii) the
arriving order attributes are also randomly chosen. This way of generating both the
schedule and the new order aims to expose the rescheduling agent to sensible different
scenarios that allow it to learn a comprehensive repair policy to successfully face the
environment uncertainty. Accordingly, the initial schedule is generated in terms of the
next values, which can be changed using the graphical interface of the prototype:
Number of orders (randomly between [10,20]), Order composition, Order Size (an
interval between 100 y 1000 kg) and Due Date.

The focal and global variables used in this example are shown in Example 1, in all
cases training is carried out with a variable number of orders in a range of 10 to 15. In
the situation considered, there exist a certain number of orders already scheduled in
the plant and a new order must be inserted so as to meet the goal state for a repaired
schedule. In each training episode, a random schedule state was generated, and a ran-
dom insertion is attempted for the new order (whose attributes are also randomly cho-
sen), which in turn serves as the focal point for defining repair operators. Fig. 4
higlights results in the overall learning process, for each one of the available resched-
uling goals. As can be seen, for Stability, the learning curve is flattened after approx-
imately 350 episodes, when a near-optimal repair policy is obtained.

Fig.4. Learning curve for the Arrival of a new order event, with three different goals.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 68

For the other two more stringent situations, namely Tardiness Improvement and
Balancing, learning curves tend to stabilize later, possibly due to a higher number of
repair operations which are necessary to try at early stages of learning so as to guaran-
tee goal achievement. As it is shown in Fig.4, after 450 training episodes, only be-
tween 5 and 8 repair steps are required, on average, to insert a new order (regardless
of the number of orders previously scheduled!).

Fig. 5 provides an example of applying the optimal sequence of repair operators
from the schedule in Fig.5 (a), using the Consult mode of the prototype, and choosing
stability as the prime objective. Before the 11th order has been included, the Total
Tardiness (TT) is 19.15 h. Once the arriving order (in white) has been randomly in-
serted, the Total Tardiness has been increased to 40.93 h; orange tasks are used to
indicate cleaning operations. Based on the learned repair policy, a sequence
RightJump-UpLeftSwap-LeftMove-DownRightSwap-LeftSwap-upRightSwap is ap-
plied until the goal state is reached with a Total Tardiness of 9.96 h., which is even
lower than the TT in the initial schedule before the 11th order was inserted.

(a). Initial Tardiness: 19.15 h. Tardiness After

Insertion: 40.93 h.
(b).Final Tardiness after applying the repair

policy: 9.96 h.
Fig.5. Repairing sequence for Arrival of a new order event

As can be seen in the generated repair sequence, the rescheduling policy tries to

obtain an equilibrated schedule, reducing cleanout times (e.g. the cleanout operation
initially presents at Ext.1), and swapping orders in order to take advantage of the re-
sources with the best processing times. It is important to note the small number of
steps that are required for the rescheduling agent to implement the learned policy to
handle order insertion. As it is shown in Fig.5, the number of operators that the agent
must implement to achieve the goal state is rather small (6 steps). Also, although the
curves tend to stabilize, a trend of gradual improvement still remains.

5 Concluding Remarks

A novel approach for simulation-based learning of a relational policy dealing with
automated repair in real time of schedules based on Relational Markov Decision Pro-
cesses has been presented. The policy allows generating a sequence of deictic (local)
repair operators to achieve several rescheduling goals to handle abnormal and un-
planned events such as inserting an arriving order with minimum tardiness based on a
relational (deictic) representation of abstract schedule states using repair operators.
Representing schedule states using a relational (deictic) abstraction is not only effi-
cient to profit from, but also potentially a very natural choice to mimic the human
ability to deal with rescheduling problems, where relations between focal points and
objects for defining repair strategies are typically used. These repair policies rely on

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 69

abstract states, which are induced for generalizing and abstracting ground examples of
schedules, allowing the use of a compact representation of the rescheduling problem.
Abstract states and macro-actions for schedule repair facilitate and accelerates learn-
ing and knowledge transfer, which is independent of the type of event that has gener-
ated a disruption and can be used reactively in real-time. Finally, an additional ad-
vantage provided by the relational (deictic) representation of schedule (abstract) states
and operators is that, relying in an appropriate and well designed set of background
knowledge rules, it enables the automatic generation through inductive logic pro-
gramming of heuristics that can be naturally understood by an end-user.

References

1. Vieira, G., Herrmann, J. Lin, E.: Rescheduling Manufacturing Systems: a Framework of
Strategies, Policies and Methods. J. of Scheduling, 6, 39 (2003)

2. Aytug, H., Lawley, M., McKay, K., Mohan, S., Uzsoy, R.: Executing production sched-
ules in the face of uncertainties: A review and some future directions. European Journal
of Operational Research, 161, 86–110 (2005)

3. Henning, G.: Production Scheduling in the Process Industries: Current Trends, Emerging
Challenges and Opportunities. Computer-Aided Chemical Engineering, 27, 23 (2009)

4. Adhitya, A., Srinivasan, R., Karimi, I. A.: Heuristic rescheduling of crude oil operations
to manage abnormal supply chain events. AIChE J. 53(2), 397-422 (2007)

5. Miyashita, K.: Learning Scheduling Control through Reinforcements, International.
Transactions in Operational Research (Pergamon Press), 7, 125 (2000)

6. Zhu, G., Bard, J., Yu, G.: Disruption management for resource-constrained project
scheduling. Journal of the Operational Research Society, 56, 365-381 (2005)

7. Li, Z., Ierapetritou, M.: Reactive scheduling using parametric programming. AIChE J.
54(10), 2610-2623 (2008)

8. Gersmann, K., Hammer, B.: Improving iterative repair strategies for scheduling with the
SVM. Neurocomputing, 63, 271–292 (2005)

9. Morales, E. F.: Relational state abstraction for reinforcement learning. Proceedings of the
Twenty-first Intl. Conference (ICML 2004), Banff, Alberta, Canada, July 4-8 (2004)

10. Palombarini, J., Martínez, E.: SmartGantt – An Intelligent System for Real Time Re-
scheduling Based on Relational Reinforcement Learning. Expert Systems with Applica-
tions vol. 39, pp. 10251- 10268 (2012)

11. Džeroski, S., De Raedt, L., Driessens, K..: Relational Reinforcement Learning. Machine
Learning, 43, No. 1/2, p. 7 (2001)

12. Van Otterlo, M.: The Logic of Adaptive Behavior: Knowledge Representation and Algo-
rithms for Adaptive Sequential Decision Making Under Uncertainty in First-order and
Relational Domains, IOS Press, Amsterdam (2009)

13. De Raedt, L.: Logical and Relational Learning. Springer-Verlag, Berlin (2008)
14. Blockeel, H., De Raedt, L.: Top-down Induction of First Order Logical Decision Trees.

Artificial Intelligence, 101, No. 1/2, p. 285 (1998)
15. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
16. Driessens, K., Ramon, J., Blockeel, H.: Speeding up Relational Reinforcement Learning

through the use of an Incremental First Order Decision Tree Learner. In: De Raedt, L. and
Flach, P. (eds.) 13th Euro Conf. Machine Learning, vol. 2167, 97, Springer, (2001)

17. Musier, R., Evans, L.: An Approximate Method for the Production Scheduling of Indus-
trial Batch Processes with Parallel Units. Comp. and Chem. Engineering, 13, 229 (1989)

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 70

