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Abstract. The increasing number of mobile devices with ever-growing process-
ing capabilities, make them interesting for scientific applications development.
However, we must take into account that mobile devices still have limited ca-
pabilities compared to fixed devices. Besides, mobile devices rely on battery as
energy supply. For these reasons, this paper analyzes different micro-benchmarks
battery consumption given by common operations in scientific computational ker-
nels. Indirectly, we propose good programming practices or code refactorings in
order to minimize mobile devices battery consumption.
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1 Introduction

Mobile devices still have more limited resources than personal computers or servers. In
particular, minimizing energy consumption is very important since mobile devices rely
on battery as energy supply. However, devices such as smartphones, netbooks, notebooks
and tablets represent an attractive market to develop applications, mostly because they
are the commonest form of technological device in the world [22].

Firstly, these devices are no longer simple agendas or cellphones. Current mobile de-
vices are “little computers”, and their capabilities are steadily increasing. To appreciate
the computational capabilities of modern mobile devices, it is necessary to look into the
past. Back in 1986, the Cray X-MP, which had 16-128 megabytes of RAM and one,
two or four processors running at 117 MHz each, was one of the most powerful super-
computers of its times. This computer needed a dedicated power line to satisfy its energy
requirements [6]. On the other hand, current smartphones have a processor, in some cases
with 2 to 4 cores running at up to 2 GHz, and up to 1 GB of RAM. Besides, while the
supercomputer was interconnected with other computers by a wired network link, mo-
bile devices can be connected through a range of wireless network technologies (such
as 3G, WiFi or Bluetooth) with a speed higher than 1 Mbps [22]. Furthermore, mobile
devices offer interesting features such as sensors, GPS, accelerometers, digital maps for
navigation purposes, etc.

Additionally, it is important to mention the accelerated evolution of mobile devices.
The firsts notebook, the Osborne 1, was released in 1981. Its power supply was through
an electrical connection or an optional battery. The Osborne 1 had 60 KB of RAM and
a Z80 processor that ran at 4 MHz. At present, any smartphone has more capacity than
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this notebook.We can see the continued smartphones progress comparing the Samsung
Galaxy S which was presented on September 9, 2010 and its successor Samsung Galaxy
SII. The Samsung Galaxy S used the Samsung S5PC110 processor which combined a
45 nm 1 GHz ARM Cortex-A8 based CPU. This smartphone has 512 MB of RAM.
Additionally, it has a 2 GB internal memory and 16 GB external memory capacity. With
respect to battery, it has a talk time of up to 6 hours and standby time of up to 300 hours.
The Samsung Galaxy S supports Bluetooth 3.0, Wi-Fi 802.11b/g/n and 3G data up to 7.2
Mbit/s. In contrast, the Galaxy S II has a 1.2 GHz dual core processor, 1 GB of RAM,
16 GB of internal mass storage, 64 GB microSD card slot. It has a battery standby time
of up to 10.5 days and talk time of up to 8 hours.

These examples show that while computational capacity has increased rapidly, bat-
tery power has increased slowly [20]. Consequently, this paper main contributions are
evaluating mobile device capabilities using different micro-benchmarks, and proposing
various code refactorings to save battery in mobile devices. Currently, mobile devices are
not only elements of connection and external computing resources, but also they are part
of the computational infrastructure in scientific projects [16,22]. For instance, mobile
devices new capabilities led to the scientific community interest in integrating them in
common execution infrastructures used in simulations such as Grids and clusters [21,22].
Additionally, MIT researchers have recently proposed a hybrid computing model where
mobile devices actually run semi-intensive sections of fluid simulation applications [13].
This paper analyzes the battery consumption of different versions of micro-benchmarks
consisting of common programming operations found in scientific applications in this
new hardware. The operations chosen are array copying, string handling, matrix traver-
sal, arithmetic operations, exception handling, object field access and object creation.

Concretely, we have focused on Android-powered devices because the Android plat-
form is present in millions of smartphones, tablets, and other devices and it is an open-
source project led by Google and based on Linux. It includes extensible and tailorable
middleware, key applications and software stack.

The rest of this paper is organized as follows. First, Section 2 describes in detail each
micro-benchmark chosen. After that, Section 3 shows the decisions made and the prob-
lems encountered in developing the experiments. The Section also analyzes the obtained
results in detail. Finally, Section 4 presents conclusions results and discusses about future
research directions.

2 Micro-benchmarks

Some of the most important problems to develop applications for mobile devices are their
limited capabilities in terms of CPU processing capacity and battery time. To minimize
mobile devices battery consumption, and indirectly using less CPU time, this work aims
to find the relation between different ways of writing the same micro-benchmark and
their corresponding battery consumption. As a corollary, we are looking for guidelines for
programming common operations in mobile devices so that applications in general and
scientific codes in particular are more efficient in terms of battery usage and execution
time.

For this, we chose seven groups of micro-benchmarks. The election was based on the
recurrent use of these structures in scientific applications. These groups are array copying,
matrix traversal, string handling, arithmetic operations, exception handling, object field
access and object creation. The next paragraph explains the reasons why these groups
were selected.
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Over the years several different libraries for scientific use were developed in diverse
languages such as C++ and Java [12,19]. In consequence, we decided to determine bat-
tery consumption improvement using these libraries to copy an array over implement-
ing manually the same functionality. Additionally, matrixes are a common structure in
scientific software. Matrixes have important mathematical and computational uses. For
instance matrix-based 3D transformations [1] and Matrix-Matrix Multiplication are im-
portant kernels in linear algebra algorithms [17]. Concerning to programs manipulating
strings, concatenation is the most important string operation [5]. Our interest in strings is
based on the above statement and the uses in the scientific community as those shown in
the following example. In [11] authors analyze the problem of covering a set of strings S
with a set C of substrings in S (C covers S if every string in S can be written as a con-
catenation of the substrings in C). Regarding the fourth group, several studies [25,2,9]
focus their efforts on arithmetic operations or involve large numbers of them. More-
over, exceptions represent a mechanism for elegant error handling and are commonly
used in languages that support them. However, exceptions produce performance loss. In
consequence, works such as [14] analyze mechanisms for removing overheads imposed
by the existence of exception handlers and motivate us to investigate its impact on bat-
tery consumption. The next group, method invocation, was chosen for similar reasons. In
object-oriented (OO) programming, a method is a subroutine associated with a class. As a
consequence, calling a method is a common operation in OO applications. This motivates
us to analyze the battery consumption that this operation implies. Finally, we chose ob-
ject creation not only because objects are the focus of OO programing and object creation
itself reduces the performance of the application, but also application performance indi-
rectly declines because of garbage collectors, which clean memory from unused objects.
Then, an excessive number of objects can seriously decrease application performance.

Next subsections detail each micro-benchmark and mention some relevant Java char-
acteristics since it is the high level programming language the Android platform relies
on. Additionally, Java provides portability, security, robustness and simplicity[15]. In
fact, Java provides and supports pure OO programming, multi-threading and distributed
computing implemented at language level, platform independence, automatic memory
management and exception handling which make it interesting for general purpose ap-
plications [1]. To execute these applications, Android use an special optimized virtual
machine called Dalvik.

2.1 Array copying

Most current languages provide libraries whose main goals are to modularize and reuse
common functionality easily. Examples are libraries for searching and sorting data struc-
tures, or random number generation algorithms. Using these libraries has significant ad-
vantages over using an ad-hoc implementation.

Firstly, by using a standard library, developers take advantage of the knowledge of
the experts who wrote it and the experience of those who used it before them. A sec-
ond advantage of using the libraries is that developers do not have to waste time writing
common functionality. As a result developers can place their code in the mainstream.
Additionally, standard libraries performance tends to be improved over time. In partic-
ular, many of the Java platform libraries have been rewritten over the years resulting in
dramatic performance improvements [3].

In this line, this paper compares the use of the System.arraycopy library with a man-
ual solution for the same functionality. Array structures are one of the most important

13th Argentine Symposium on Technology, AST 2012

41 JAIIO - AST 2012 - ISSN 1850-2806 - Page 63



structures in scientific codes. Programmers use arrays instead of multiple variable decla-
rations. For instance, in mathematics, arrays are used for polynomials representation or
combinatorial analysis.

2.2 Matrix traversal

Matrixes are also mathematical structures that have many applications such as writing
problems conveniently and compactly, helping to solve problems with linear and differ-
ential equations and coordinating change in some kind of integrals. Additionally, in graph
theory an adjacency matrix can be associated to each graph where the position [i,j] indi-
cates if the vertex i is connected with the vertex j. With this matrix for example the grade
of a particular vertex can be calculated.

At present, programmers cannot be oblivious to these structures. Matrixes are used to
store any data type and are a common structure in any 3D application, where they are of-
ten used to apply transformations to 3D images. Therefore, we tested micro-benchmarks
where NxM matrixes are traversed by rows and columns. Although they are not yet gen-
eralizable, the results of [18] shows that traversing matrixes by rows in Android smart-
phones is faster than traversing by columns. Then, we measure the impact of this in
battery consumption.

2.3 String handling

For programmers, strings are broadly the main way to represent and handle text in pro-
grams. Applications often use the data type String either to save or read data or, display a
message to the user, among other uses. Usually, concatenating these Strings is necessary
to process data.

Then, we work with concatenation using the “+” operator and using the specific Java
class StringBuilder. Considering Strings in Java are inmutables, i.e. their values can-
not be changed after they are created, the use of the “+” operator is not efficient for a
large number of concatenations. According to [3], the string concatenation operator is a
convenient way to combine a few strings into one, for instance, for generating a single
line of output or for constructing the string representation of a small object. However,
this does not scale. To use the string concatenation operator repeatedly to concatenate n
strings requires time quadratic in n. In consequence, we expect an improvement using
the StringBuilder class.

2.4 Arithmetic operations

Arithmetic operations are one of the most usual operations in applications. This is illus-
trated by management applications, accounting applications, data compression applica-
tions and mathematical applications. Particularly, scientific applications with mathematic
operations are very common and these often need several calculations to achieve their
goal. As a result, the more efficient the arithmetic operations are, the lower the battery
consumption a device experiences.

This paper measures the addition battery consumption using primitive data types.
These types are int, long, float and double. We expect the operations with int (integer)
data type to be more efficient than floating point operations. This is due to the greater
complexity that floating point operations present compared to integer operations.
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2.5 Exception handling

Java provides an exception handling mechanism for elegant error handling. Using excep-
tions is the ordinary way to manage any unexpected event like division by zero. Basically,
when an object is in a condition it can not handle, the object creates and raises an excep-
tion that has to be captured by someone else high in the call stack.

The main advantage of this mechanism is avoiding uncomfortable if-then-else error
handling blocks. Additionally, Java applications have other several advantages since this
error-handling mechanism. First, error handling is cleanly performed in a separate code
area. In addition, we can propagate the error to the first method that called the various
method up to the error. Finally, errors can be grouped and differentiated.

However, the exception mechanism has a negative effect on application performance.
First, there is little interest among JVMs in optimizing exception handling because this
mechanism was designed for exceptional situations. Additionally, writing code inside a
try-catch block prevents the application of some optimizations. Finally, throwing an ex-
ception involves object creation. Therefore this paper analyzes two methods which are
functionally equivalent, one using exceptions to respond to valid situations and one with-
out these. In other words, we show the advantage of using exceptions only in situations
that can not be handled by the object in any way. For instance, detect a division by zero is
a simple task for programmers and, in many applications, they know how the application
must respond to this situation. As a result, developers could avoid using exceptions under
this situation.

2.6 Object field access

OO languages call stacks rely on the use of methods. Objects have a set of properties
or attributes, and a set of methods that implement their behavior. One of the practices
recommended by the OO programming paradigm is hiding information. Each class pro-
vides public methods to which other classes can refer in order to access these fields or
attributes. While this practice results in more flexible designs, easy to understand and
maintain, the continual invocation of getter methods also has a negative impact on appli-
cation performance. For our purposes we measured the battery consumption to obtaining
an attribute value, which in one case is performed through a method call and in the other
is performed directly, without having the functionality encapsulated in a method.

2.7 Object creation

OO programming is based on sorting data in modular sets of information items. Addition-
ally, in object-oriented programming, object creation is inherent because different entities
with different states are required. Furthermore, the creation of objects in memory and its
maintenance always involves some computational cost. Sometimes developers can avoid
creating new objects by reusing objects no longer used after resetting their attributes. In
consequence we analyze the impact that object creation has on battery consumption over
reusing them.

As in the libraries case, we chose an structure commonly used in programming such
as lists. For instance, lists are used as modules for many other data structures such as
stacks, queues and their variations. In this paper, we compare the battery consumption
levels when creating a new list object against reusing an existing list. To reuse an existing
list we use a method to restore the list to its initial (empty) state.
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3 Experiments

Evaluating a system performance is not a trivial task [10]. Unlike traditional compiled
languages, Java compiled code (bytecode) is platform-independent. Java Virtual Ma-
chines (JVMs) provide an environment in which Java bytecode can be executed. The
traditional approach is based on the interpretation of the bytecodes. A second solution
includes the just in time (JIT) compilation in which bytecode-to-assembly translation oc-
curs continuously to minimize performance degradation. JVMs have an interpreter (or a
JIT compiler) integrated with an optimizing dynamic compiler which performs an op-
timized compilation only of the parts of the program that are most frequently used [1].
In addition, the Garbage Collector, which is the automatic dynamic memory manager,
has always been a key factor in terms of Java Virtual Machine performance. In the next
paragraphs, we present the constraints and the solutions to run micro-benchmarks in Java:

– Different Java compilers make different optimizations. Some compilers might de-
tect dead code (code not affecting the output) and delete it. Consequently, micro-
benchmarks run faster than the same code compiled with dead code. To prevent
dead code problem we can add extra code but this code can change the results.

– Secondly, Java developments have different optimization levels. First iterations of
the benchmarked code include a large amount of dynamic compilation. Later itera-
tions are usually faster because they include less compilation and the executed code
is optimized [7]. This problem is linked with the Just In Time compiler. Measuring
when the executions converge can reduce the impact.

– Thirdly, performance evaluation in virtual machines is difficult [24] because they
provide an extra abstraction layer which could change results in different runs.

– Next, the Garbage Collector can activate asynchronously while the micro-benchmark
is executing.

– Finally, the load of classes at the beginning might cause the first executions to be
slower and consume more resources.

Based on these problems, we decided to use a framework called Caliper [8]. Caliper is
Google’s open-source framework for writing, running and viewing the results of Java
micro-benchmarks dealing with the problems mentioned.

The idea was to measure how many operations could be completed in a battery cy-
cle. Each micro-benchmark was executed at least 10 times before reaching conclusions.
Each test was ran after a device restart and executing only the essential operating system
applications. Besides, the device was fully charged and unplugged before starting each
test. The device used for testing is a Samsung I5500 with the following characteristics:
600 MHz CPU (model MSM7227-1 ARM11), 256 MB RAM, 170 MB up to 16 GB of
storage and battery Lithium Ion 100 mAh.

The test results are shown in Table 1. The standard deviation was below 3% w.r.t to the
average. This deviation is a result of battery consumption generated by operating system-
essential applications. As we will discuss in the following subsections, within each test,
the more the achieved executions, the more the battery efficiency.

3.1 Array copying

In this paper, System.arraycopy Java library, which provides methods for copying ar-
rays, was chosen because this functionality is commonplace in the scientific community.
To evaluate and compare the efficiency of this library we used a manual implementation
of the same functionality. The results are shown in Table 1 and graphically in Fig. 1a.
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Benchmark Number of executions(Average) Standard deviation (%)

Use of Language Built-in Libraries

Manual Array Copy 11,103,650 0.64

System Array Copy 13,428,990 1.37

Matrix Traversal

By-column Matrix Iteration 149,443 2.29

By-row Matrix Iteration 320,785 1.84

String Handling

String Concatenation (+) 1,791 2.58

String Builder 1,399,352 2.81

Arithmetic Operations

Add Constant to double 412,940,900,000 2.28

Add Constant to float 435,343,470,000 2.56

Add Constant to long 788,482,635,000 2.60

Add Constant to int 1,183,897,395,000 2.01

Exception Handling

Use Exception 2,612,158,650 2.93

No Exception 250,029,732,150 2.99

Object Field Access

Getter-based Access 115,459,467,000 2.97

Direct Access 919,194,540,000 2.13

Object Creation

On-demand Object Creation 1,691,926,500 2.70

Object Reuse 15,433,805,000 2.81

Table 1: Micro-benchmark results

Quantities of executions obtained show that using the library improves by a 20.94%
battery usage. As this paper is focused on one library, we can not extend the results to
other libraries, but using libraries for the case of array copying is a good practice.

3.2 Matrix traversal

As mentioned in Section 2, one of the most common operations used in matrix struc-
tures is exploring its elements to do some processing later. This paper uses NxM matrix
structures and compares the traverse by row with the traverse by columns. Specifically,
a matrix of 1024x1024 is used to run tests. One of the key advantages of these micro-
benchmarks is the triviality of changing the traverse mode. The results show an improve-
ment of 114.65% using the traverse by-row operation. These conclusions are supported
by numerical results presented in the Table 1 and Fig. 1b.

3.3 String handling

The results of the two alternatives to this micro-benchmark are in Table 1 were ob-
tained. As expected, using the specific class StringBuilder generates an improvement
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of 78,023.73% in Strings with 1,000 concatenations. Due to the large difference in the
results, these are presented in an special graphic with logarithmic scale in Fig. 1c.

The main reason for this variation is that String literals in Java programs, such as "abc",
are implemented as instances of this class. Strings are constants, their values cannot be
changed after they are created. Consequently, using the “+” operator involves the cre-
ation of a temporal object which contains the final string. Instead of the “+” operator,
the StringBuilder class maintains a mutable string of characters and provides methods to
modify it without creating new objects.

3.4 Arithmetic operations

The micro-benchmark involved adding a constant value to a numerical variable declared
several times by varing its data type. Table 1 and Fig. 1d show the obtained results.
Operations with float numbers have more cost than operations with integer numbers.
Thus, the latter group uses less battery than the former group. To specify, using int data
type has an improvement of 186.7%, 171.95% and 50.15% over relying on the double,
float and long data types, respectively. As a result, using the most specific data type is a
good practice to save battery in mobile devices.

Additionally, the double and long data types consume more battery than the float and
int data types, respectively, because the first data types provide greater accuracy than the
second ones. Consequently, greater precision implies faster battery depletion.

3.5 Exception handling

The results shown in Table 1 and Fig. 1e support the first hypothesis presented in Sec-
tion 2.5. As expected, programmers can generate significant battery saving not using ex-
ceptions in his applications. According to this, Fig. 1e shows an improvement of 9,471%.
Reasons shown in Section 2.5, such as the creation of objects and the limited optimiza-
tions made by the JVM, produce higher battery consumption. To ensure minimum battery
consumption, we can conclude that the use of exceptions must be reserved only for error
situations that the object can not deal with itself.

3.6 Object field access

Obtaining the variable value directly and not through a getter represents an improve-
ment of 696.12% of battery consumption. Table 1 and Fig. 1f show that direct access to
variables which are frequently used, results in significant battery savings. However, the
programmer must not declare as public all variables of a class, or combine several meth-
ods of a class that are unrelated to avoid repetitive invocations. Loss of legibility and the
high coupling of the resulting applications would outweigh the benefit. In consequence,
developers must determine to what extent it is valuable to set aside design concerns in
order to favor performance. However, there are classic cases such as accessing to the class
variables by the same class methods which can directly access the variable.

3.7 Object creation

As discussed in Section 2.7, the hypothesis that object creation produces more battery
consumption than reusing objects is reflected in the results presented. A 812.20% im-
provement is shown in Table 1 and Fig. 1g. Developers must be careful not to create
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objects that are not needed in the application. Thus, they can achieve significant savings
in battery consumption. Programmers must also avoid reusing objects which are being
used or may be used in future by the application for correctness reasons. Additionally,
we must consider that improvements may vary depending on the object to be created;
however in this paper we tested with lists, which represent an object type very popular to
implement other data structures.

4 Conclusions

In this paper, different common micro-benchmarks were presented for analyzing their
associated battery consumption in a state-of-the-art and very popular mobile device. In
all cases we confirmed the expected results: micro-benchmarks that have worse perfor-
mance in terms of time [18] consume more battery as well. In particular, the results show
that it is recommendable to use libraries instead of using a manual implementation of
the functionalities. Either, something trivial as how a matrix is iterated can improve an
application. Additionally, this paper reflects the importance of avoiding operations with
immutable data types as Strings. As regards to numerics data type, developers must an-
alyze the application and use the most specific data type to save battery. Other method to
save battery significantly is to avoid using exceptions on the application when possible.
Many times, objects can handle errors proposing mechanisms to overcome undesirable
situations in the application, without throwing an exception. Finally, referring to basic
and common operations in OO programming such as object field access and object cre-
ation, we showed that when these operations are not necessary they should avoid it as
much as possible in devices which rely on battery as energy supply.

These results represent a set of guidelines or best practices that developers can apply
in order to get the most benefit of mobile devices for applications heavily relying on such
operations, particularly scientific codes. The guidelines are at the same time refactorings
programmers should apply when porting standard Java applications to run on Android-
powered devices.

This work can be extended in several directions. Firstly, we will analyze the possibil-
ity of using other micro-benchmarks to assess mobile devices capabilities. These micro-
benchmarks will be related with handling linear data structures (Vector, LinkedList) in
memory, using of primitive data types over using of object data types, etc. Secondly,
we will run the tests in other devices to prove whether the obtained results are device-
dependent or not. In addition, we will study how to perform automatic code refactoring,
and analyze real applications. Finally, we will test the impact of these refactorings using
native Android applications, which is also a hot topic in the area [4,23].
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