13th Argentine Symposium on Software Engineering, ASSE 2012

An UML profile for modeling RESTful services

Emilio Ormeno, Maria Lund, Laura Aballay, and Silvana Aciar

Institute of Informatics
National University of San Juan,
Meglioli Sur 1051, Rivadavia, San Juan, Argentina
{eormeno,mlund,laballay,saciar}@iinfo.unsj.edu.ar

Abstract. Usually, RESTful services have been used as technology plat-
form for web services and for accessing web resources. More recently,
these services have been used as controllers in applications that imple-
ment MVC pattern. Tools such as Spring and Spring Roo, greatly facil-
itate the development and maintenance of such applications. However,
despite the maturity of the solutions, the few proposals for modeling
RESTful services, focus only on REST Architecture concepts, leaving
aside the various uses of these services, and the technological elements
that support them. Based on the controllers and artifacts generated by
Spring Roo, in this paper we present an UML profile for modeling REST-
ful services. The models using the profile can represent the various uses
of the services, and also they can be transformed into a working Spring
Web Application.

1 Introduction

In recent years, REST [1] services were preferred over the traditional Web Ser-
vices using SOAP. This is because their attributes of scalability, evolvability
[2], interoperability, and their relative ease of implementation. More recently,
RESTful services have begun to be used as controllers in Web applications that
implement the Model-View-Controller (MVC) pattern. This new functionality
allows you to include within the same class of service, RESTful services that
operate as a controller with RESTful services that operate as Web services.

In the current state of the art, to work with RESTful services, there are
two lines: (1) development tools focused on the programmer, and (2) modeling
techniques of RESTful services from an academic perspective:

1. The development of the services is partly solved by frameworks and gen-
erative programming tools [3] which facilitate many of the implementation
tasks. Spring Framework [4, 5] stands as one of the most successful frame-
works for Java to automate much of the development of RESTful services
[6]. More recently, Spring Roo [7, 8] facilitates the construction of a Spring
project, using the best practices for producing the RESTful controllers, the
views for the domain entities, and even their ORM [9]. This generative pro-
gramming technique, that produces the entities CRUDs (CReate-Update-
Delete), is also known as scaffolding.

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 119

13th Argentine Symposium on Software Engineering, ASSE 2012

2. Regarding RESTful service modeling, several authors [10-13] propose various
techniques mainly focused on the concepts of REST architectures and access
to resources.

Both lines do not address the overall problem: on the one hand, generated
code that lacks of a clear architecture of the involved artifacts, and on the other
hand, modeling from a purist perspective, which does not consider the technology
involved, and the various uses of RESTful services.

Focused on reducing the gap between both perspectives and the design effort,
in this paper we present a set of UML elements and stereotypes, conforming an
UML profile, that allow a software designer, design RESTful services, the inter-
actions with the user interface, and the controllers of a MVC web application.

These elements and stereotypes emerge as a result of applying a metamodel-
ing process that, through successive stages of refinement and abstraction, helps
an advanced designer, to stereotype the Java code and the artifacts generated by
Spring Roo. At the current stage of development, these stereotypes are packaged
in UML profiles [14,15] of the Enterprise Architect [16] tool alongside a set of
transformation code templates that provides the same tool [17].

This paper proceeds as follows: The next section describes related work.
Section 3 discusses the technologies used to prepare the proposal. Section 4
describe the UML stereotypes. Section 5 shows the design and implementation
of a study case using the stereotypes and templates of our proposal. Section 6
describes the metamodeling process we follow to obtain the UML profile. Finally,
Section 7 concludes and discusses future research.

2 Related Work

Silvia Schreier [13] comments the lack of mechanisms for modeling UML RESTful
services and proposes a metamodel and a terminology for this type of design
services.

On the other hand, Porres and Rauf et al. [11,12], propose the use of class
diagrams and UML state machines to model REST services. The authors model
interfaces with state diagrams, and proposes the use of functions based on the
HTTP protocol that test the presence or absence of a resource.

Laitkorpi and Koskinen [18], define a mediation mechanism between the def-
inition of a service and a RESTful API for RESTful services. This mechanism
uses a tool chain based on UML for helping developers in modeling and imple-
menting REST services.

Concerning the use of templates and code generation for Spring Roo, high-
lights the work done by Castrejon, Lopez-Landa and Lozano, who present a tool
called Model2Roo [19]. They generate scripts for Spring Roo from entity classes
with this tool including the Roo command to generate the CRUDs controllers
for each entity.

Our approach differs from these proposals in the sense that we model with
simple UML elements the interaction and the structure, without introducing into

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 120

13th Argentine Symposium on Software Engineering, ASSE 2012

3
e 1)
Web Layer
‘) Spring @:
@Controller GBS
Spring
mvc
= J
s 7\

Domain Layer

JPA
@Entity

. J

Fig. 1. Target technologies of the modeling strategy.

the logic of the service itself as is proposed by Porres and Rauf. Regarding the
work of Schreier, our proposal is more integrated into the MDA [20, 21] process.
Finally, although we generate code in a similar way than the work of Castrejon,
our proposal can model the entire MVC web application.

3 Related Technologies

Below, we describe in detail the technologies employed.

3.1 Spring Roo

Spring Roo (or simply Roo) is a Maven-based RAD tool that generates Java
applications on Spring Framework. Roo takes domain entities defined by a pro-
grammer and can generate a complete and working web application with the
corresponding CRUD for the selected entities. Later, the development and cus-
tomization of the generated project could be continued from the Eclipse envi-
ronment.

While Spring Roo allows the developer to select different frameworks to build
the project, our modeling approach attempts to abstract elements of the frame-
works: Spring MVC [22], JPA [23] for domain classes, and JSPX [24] for views.
Figure 1 shows an architecture with the considered frameworks.

The statements that make up the Roo application can be defined in a script.
For example, the script in Listing 1.1 creates a Web application for a guestbook.
In lines 3 and 4 is defined the GuestBook entity with the message attribute.
Line 5 specifies a RESTful controller called GuestBookController which does
not allow or modification or deletion. Line 2 defines Hypersonic as database and
Hibernate as ORM. The resulting Web application can be seen in the figure 2.

1 project --topLevelPackage com.foo

2 persistence setup --provider HIBERNATE --database HYPERSONIC_IN_MEMORY
3 entity --class “.domain.GuestBook

4 field string message

5 controller scaffold --class ~.web.GuestBookController

--disallowedOperations update,delete

Listing 1.1. Guest Book Roo Script

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 121

13th Argentine Symposium on Software Engineering, ASSE 2012

[4
~ .
ROO b_pr]ng
GUEST BOOK - Create new Guest Book
Create new Guest Book i a0
Message Hello Warld
List all Guest Bogks L
SAVE
Home | Language: g2 | Theme: standard | ait

Fig. 2. The Guestbook CRUD generated by Roo.

Listing 1.2 shows an excerpt of the RESTful controller generated by Spring

Roo for the script of the listing 1.1.

— Lines 1 and 2 show the annotations that configure the class as a RESTful

controller, whose resources will be accessed from the URI /guestbooks.

— The annotation of line 5, indicates that the createForm method is executed

when the parameter form is present in an URL via the HTTP GET method.
The method instantiate an object GuestBook and send it to the view create.

— Between lines 8 and 9, the create method receives a GuestBook object from

a view, makes the persistence of the object and redirects to a view that shows
the new object. The RequestMapping annotation indicates that the method
is executed with HTTP POST.

— The show method of line 12, receives as a parameter the ID of the object to

be displayed, after found the object, the method redirects to a view called
show. Note the pattern {id} defined in the URI.

@Controller
@RequestMapping("/guestbooks")
public class GuestBookController {

QRequestMapping(params="form", method=GET)
public String createForm(Model uiModel) {...}

QRequestMapping(method=P0OST)
public String create(GuestBook guestBook){...}

ORequestMapping(value="/{id}", method=GET)
public String show(@PathVariable("id") Long id){...}

Listing 1.2. Roo Generated Guestbook RESTful controller pseudo code

In short Spring Framework and Spring Roo are of particular interest in our

study because, first, the technologies are mature and widely disseminated. Sec-
ond, code generation is based on templates developed by experts. Finally, the
generated application implements design patterns that enhance modifiability,
scalability, and performance.

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 122

13th Argentine Symposium on Software Engineering, ASSE 2012

3.2 Enterprise Architect Design Tool

In our initial study, Enterprise Architect (EA) has features that make it suitable
due to:

It facilitates the complete cycle management of software projects.
— It allows to design with UML 2.3 and is compatible with MOF.
It provides Java libraries to read or modify the models. In our current and
future work, this is important for decoupling the generation of Roo applica-
tions of the EA design environment.
It Provides support for MDA transformations. In this regard:
e [t provides mechanisms for metamodeling.
e It has a code generation framework (CFT) that allows to customize the
source code generation of the models, from the analysis of the UML
metamodel.

Because these last two features are of particular interest in our study, we will
describe below in detail.

3.3 Metamodeling with Enterprise Architect

EA offers agile mechanisms for domain metamodeling. Figure 3 shows the def-
inition of two stereotypes of our proposal: the stereotype ”rest-controller” ex-
tending the metaclass Class, and the stereotype "rest-service” as an extension
of the metaclass ”Interface”.

The graphical notation of a stereotype can be defined with a language for
this purpose. The figure 4 shows the graphical notation of the ”rest-controller”
stereotype in the shape editor window.

In general, in order to use the stereotyped UML elements of a profile in an
EA project, the software designer have to import a XMI file with the profile and
its resources (shapes, colors, templates). Figure 5 shows a model that uses the
stereotypes of the profile "RESTful.xmi.” In the same figure, notice the tool bar
with elements of the profile.

3.4 Enterprise Architect’s Code Template Framework

EA provides a framework called Code Template Framework to generate source
code files. To generate code for a specific metamodel element, its template can
be customized. Figure 6 shows the template to generate Java code for ”Class”
elements stereotyped as ”rest-controller”.

4 The UML Profile

With the aim of reducing the modeling effort of RESTful services, we consider
necessary to extend both the syntax and semantics of certain elements of the
UML metamodel. To do this, we used the standard extension mechanism known

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 123

13th Argentine Symposium on Software Engineering, ASSE 2012

@ restiul - EA 101 x|
| @-8] 0 e
Caja de herramie...
«metacl assn «metacl assn
B peri Class Interface
&P Esterectipo '4\
sestendss wextendss
B Metackase | 1
Enumeracion rest-controller €% rest-service (4]
Relaciones de perfil + url: Sting + media: Media= HTML
Coman + method: Method= GET
+ position: Position = LEFT
wenumerations + uii: Sting
Method
GET - -
GoST Fosition Media
PUT
DELETE LEFT HTML
TRACE RIGHT JsOM
HEAD TOF FAML
OFTIONS BOTTOM TAML
-
| r
ﬂ Pagina de inicio \QS #RESTHul J ﬂ
Diagramalégi... RESTRul O——— @ ¢ mm s

Fig. 3. The definition of stereotypes in EA.

[Editor de forma x|
Formate |EAshapescript 1.0 v | _Importar | Exportar | Aceptar Cancelar | Ayuda |
Tnspeccion previa de main——————————
1 shape main(
2 h_align = "center”:
3 v_align = rcenter”:
4 print {"#namefi: HTAG:url#™):
5 roundrect{d, 6,100,100, 50, 50
[woveta (30,607
2 Lineto(az, sy #name: #TAGUIE
& moveto (30, 6)
9 lineto(42,9):
10}
11
Préxima forma | Actualizar
< | ’ | I]

Fig. 4. The shape editor of EA.

as profiling or stereotyping, which has been widely used to extend the set of
UML elements to facilitate the modeling for specific domains.

The following subsections describe the stereotypes to model controllers, views
and RESTful services.

4.1 Extension for controllers

A RESTful controller is represented as a class with a stereotype called “rest-
controller”. This stereotype adds the attribute url containing the base URL to
access the exposed services. Figure 7-a shows the definition of the stereotype
rest-controller as a specialization of the metaclass Class. Figure 7-b shows

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 124

13th Argentine Symposium on Software Engineering, ASSE 2012

2

| rest-controller

e
2

@ restful - EA

5 = -
e e =E]
Languaie. Template
[1ava - 1 ClassNotes:
New L | z sPI="in"s
o B 3 BR tHapping [satssclassTag: "ur L5 aqus)
HNombre Modiicada ~ 4 Bconvroller
Fil= Mo 5 §sessionltrr = slist="Linkedbttribute__wodel"s
File mpl Ho 6%if §sessionkttr = "%
Namespace Ho 7 BSessionirrribuces((§sessioniter })
Namespace Impl o 5 tendlfs
Namespace Body Na oapT=r My
Hamespace Body Impl Na 10 sClassDeclarations
Namespace Declration Mo ‘
Mamespace Declaration | . Mo 11 xClassBodys
Class o
Class Impl o

Class Notes

Sustitusién de estegeotipos:

Na -
< | >

Clase

Caraclerist,.| Modiicado |
restgontiler 5i
restservice si

Kl

Pagiade inica ™, %] Editor de Plantilas de Cadigo |

b

Fig. 6. The Template for the rest-controller stereotype.

the graphical notation of the stereotype with the name of the controller’s class
and its url (both definitions can also be seen in figures 3 and 4).

4.2 Extensions for the RESTful services

From an architectural point of view, the key concepts in a REST service are:
resources have a uniform interface (a), these resources are addressed by resource
identifiers (b), with representation (c) and hypermedia links between them (d);

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 125

13th Argentine Symposium on Software Engineering, ASSE 2012

<< metaclass >>

Class

UsersManager: /users

<< extends >>

<< stereotype >>

rest-controller

+ url : String

a)

Fig. 7. The rest-controller stereotype definition.

and the communication between client and server is stateless (e). Figure 8-a
shows the formal definition of the stereotype rest-service. Figure 8-b shows
how to use this extension for designing a rest service for listing users. The stereo-
type includes the attribute position that specifies the position of the lollipop
interface for the graphical notation. In resume, our RESTful stereotype charac-
teristics are:

— The stereotype rest-service abstracts a RESTful service which is modeled
as an extended UML interface. This element should be embedded within a
controller.

— The URI of the service is modeled as an attribute of the stereotype “rest-
service”.

— URI variables. Also called variable path, is a variable defined by a pattern
within the URL of the resource. For example, a variable to access a particular
user might be “/users/{userNumber}” and a valid URI for this mapping,
would be /users/30401.

— HTTP parameters. The parameters included in the URI.

— The service’s HTTP method (GET, POST, PUT or DELETE) is defined in the
method attribute.

— The invoked service may have different answers depending on the client.
For example, the resource /users/30401 could return a stream JSON [25],
YAML [26], XML, or just redirect to a HTML view.

The variables and parameters of the service are modeled as stereotyped at-
tributes. Figure 9 shows the definition of the stereotypes path-variable and
request-parameter. The stereotypes validated and model-attribute are de-
scribed in section 5.

4.3 Extensions for the views

Both views and GUI elements are modeled with stereotyped classes. Each view
has a container element called ViewPage that defines: its name (viewName at-
tribute), the associated URL (the name of the class), and the state of the session
(session attribute) for indicating whether the view begins a session, the session
is intermediate, or it is final. The graphical notation of the stereotype ViewPage
changes according this state (see figure 10).

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 126

13th Argentine Symposium on Software Engineering, ASSE 2012

<< metaclass >>
Interface

I
<< extends >> I
I

<< stereotype >> I

rest-service = | L---------o--

+ uri : String

+ method : Method=GET
+ media : Media=HTML

+ position : Position=LEFT

a)

Fig. 8. The rest-service stereotype definition.

<< metaclass >> << metaclass >>
Attribute Operation

<< extends >>

<< stereotype >> << extends >>
rest-parameter

<< stereotype >> << stercotype >> << stereotype >> << stereotype >>
path-variable request-parameter validated model-attribute
+ required : boolean = false + value : String

Fig. 9. The rest-parameters stereotypes.

<< metaclass >>
Class

<< extends >> << extends >> << extends >>

<< stereotype >> << stereotype >> << stereotype >>
panel input ViewPage

+ value : String + viewName : String
< == + session : SessionState

SessionState

BEGIN
INTERMEDIATE
FINISH

Fig. 10. The stereotypes for GUI elements.

In the current state of development we have not yet implemented full code
generation for views. Figure 10 shows the definition of stereotypes for view el-
ements, figure 11 shows the design of a GUI views that includes some of the
stereotyped elements.

5 Study Case

To exemplify the use of the profile, we model an user registration functionality.
Then, we apply the code generation templates to generate: (1) the stubs for
the controller, (2) the RESTful services, and (3) the Roo script for the model’s
entities and views. In short, the functionality to be modeled is as follows:

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 127

10

—_

13th Argentine Symposium on Software Engineering, ASSE 2012

@ Initial New user form: /user/create

¢ | CREATE_FORM

| 1 first_name_label:
{Welcome new user: | | jast_name_label:]
lusers/welcome &=
-------------- I user_label:
! | pesswordlabet: [7]
! Welcome new user message |
: | N

<< pojo >>

/ UserData
user : String
pass : String
first : String
last : String

RegisterPage

|

I
________________ | : domain
1
i | 5 -

T Activation account 1 Register ¥ ", ::e":ffyzz gSST

! nextsteps: 1 i | -.\| <<entity>> Person
! <<entity>> Role
|

| 'users_next_steps' /L/
0 T '

Fig. 12. The registration subsystem designed with the extensions.

A guest require registration in the system.

. The system asks the guest to complete a form with: last name, first name,

user name, password, and email.

. Once the guest submits the form with correct data, the system persists the

first name, the last name and the email into a Person entity, while the user
name and the password into an User entity with an inactive state.

. In order to validate the user entered a valid e-mail, the system sends an

email to the specified e-mail with instructions to activate the account (the
user can not perform any operation if the account is not active).

. Finally, the system responds the user with a page that indicates that he/she

should have received an e-mail with instructions to activate his/her account.

The figure 12 showing the registration subsystem design deserves some com-

ments:

The whole structure and interaction concerning a controller is in a single
class diagram. We hope this approach could reduce the modeling effort and
enhance the visibility of the whole interaction.

The example displays the three states of the ViewPage stereotype: START,
FINISH and INTERMEDIATE.

The direction of the associations explicit a sequence, so we think it is no
necessary a sequence or activity diagram.

The class with the stereotype P0JO (Plain Old Java Object), will become a
typical JavaBean with getters and setters for each attribute [27].

The association with stereotype session-attribute define an object with ’inter-
action’ scope. For example, an object of type UserData is passed between

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 128

13th Argentine Symposium on Software Engineering, ASSE 2012

11

the interface and the RESTful services. Here, the designer is free for using
the session state (violating the stateless of the REST style) or not.

Listings 1.3 and 1.4 shows part of the Roo script and part of the Java code,
both generated from the EA environment with the templates.

1 project --topLevelPackage edu.idei.example
2 persistence setup --provider HIBERNATE --database MYSQL --databaseName

field string first
field string last

3

4 entity --class “.domain.Person
5 entity --class “.domain.User
6

7 focus --class ~“.domain.Person
8

9

11 focus --class ~“.domain.User
12 field string user

13 field string password

14 field string email

16 web mvc view --path /guest/users_create --title "Newpuser,form"

Listing 1.3. Generated Roo script for entities and views

package edu.idei.example.web;

1
2 ...
3 @RequestMapping("/guest")
4 @Controller

5 @SessionAttributes({ "userData" })

6 public class GuestRegistering {

7 G@RequestMapping(value="register",

8 method=RequestMethod.GET)

9 public String registerPage(Model uiModel){
10 // if (condition) {

11 // return "users_create”;

12 // }
13 return "";
14 ¥

15

16 QRequestMapping(method = RequestMethod.POST)
17 public String register (Model uiModel){

18 // if (condition) {

19 // return "users_next_steps”;

20 // }
21 return "";
22}

23 public UserData m_UserData;
24 public ActivationData m_ActivationData;
25 }

Listing 1.4. Generated code for controller and RESTful services

6 The Metamodeling process
The previous extensions emerge as a result of applying a metamodeling process

that, through successive stages of refinement and abstraction, helps an advanced
designer, to stereotype the Java code and the artifacts generated by Spring

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 129

12

13th Argentine Symposium on Software Engineering, ASSE 2012

Spring Project
(EA generated)

Spring Project
(Roo generated)

Spring Roo

@l

Roo Script LUENE]
(sample) Inverse Eng.

RESTful
controllers
(Java classes)
9

UML metamodels Enterprise Architect
(Profiles) Code Templates

Roo Script
(entities)
10

UML models
(entities + RESTful)

EA Code
Generation

Fig. 13. The process followed to obtain the metamodel.

Roo. Before explaining the details of our process, it is necessary to clarify some
premises:

1.

w

We tried to abstract the Roo generated elements in order to obtain a set of
platform independent models (PIM)[28].

. In the case of entity classes, we used the stereotype ”entity” already present

in almost all design tools.

. Extensions to the interactions are based on the MVC pattern [29].
. In order to reduce the modeling effort, we represent in the same structural

diagram, both structural and interaction elements.

Figure 13 shows an activity diagram with the process we follow to define

the metamodels and the proposed extensions. In the figure, black elements with
white text, represent manual artifacts or processes. The rectangles represent
artifacts (files), while the rounded rectangles represent processes. Arrows can
represent sequence, or the entry of an artifact to a process.

The following describes the process shown in Figure 13 referring to the num-

bers of each item:

First, in the Spring Roo shell (1 and 2) we generate a working project of a
simple application (3) (see figure 2).

Then, manually we make the reverse engineering [30] of Java code and gener-
ated elements, and get a first generalization and abstraction of the observed
elements (4). This abstraction is documented in the EA environment in the
form of profiles (5) (packages of stereotypes) and code generation templates
(6) (see figure 3).

Using the profiles, we design the entities and the controller of an application
similar to the original script (7) (see figure 12).

Using the engine of transformation of EA, we obtain the source code of
the previous design by applying the templates (8) for code generation. This

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 130

13th Argentine Symposium on Software Engineering, ASSE 2012

13

transformation generates two codes: a Java RESTful controller (9), and a
Roo script from entity classes (10) (see listings 1.3 and 1.4).

— Roo script (10) is executed on the Roo environment (11) to generate another
Spring Roo project (12) mixed with the RESTful controller (9).

— Finally, we compare the functionality of the original project regarding the
obtained from the stereotypes and transformation templates; if the func-
tionality is not similar, we review the analysis (4); on the contrary, if the
functionality is similar, we terminate the process, and we begin again with
a new Roo script (1) to incorporate more modeling elements.

7 Conclusion and future work

In this paper we have presented a proposal for modeling RESTful controllers us-
ing extended UML elements. Regarding other models, our proposal introduces
a set of a stereotyped classes and relationships, conforming both a new UML
structural diagram. In figure 12 the controller, the services, and the interac-
tion process, are shown in one structural diagram. We hope this approach could
reduce the modeling effort and promote the modifiability given that all the ele-
ments and its MVC interaction is shown in a sight.

Currently we are working on two aspects: in first place, we are trying to
formalize the profiles using OCL; in second place, we are working in developing
this proposal in free tools and platforms such as Eclipse [31] with plug-ins like
EMF [32] or [33].

Furthermore, in the absence of proposals easy to use and effective for the
generation of source code, we think that ours could be framed in a MDE envi-
ronment with SPEM [34], to generate pieces of software, to distribute tasks to
main stakeholders, and maintain synchronized the models with the source code,
in a non-intrusive way.

Our proposal is still under development and the scope of our testing is very
limited, so we can not predict whether their use can be extrapolated to larger
systems with many controllers, views and services, or whether it constitutes a
PIM. However, we consider this approach could represent a new paradigm, and
so deserves further research.

Acknowledgment

This work was developed as part of the research project ForCupido financed by
CICITCA.

References

1. Fielding, R.: Architectural styles and the design of network-based software ar-
chitectures. http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm [Online;
accessed 19-apr-2012].

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 131

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

13th Argentine Symposium on Software Engineering, ASSE 2012

. Riebisch, M., Bode, S.: Software evolvability. Informatik-Spektrum 32 (May 2009)

339-343

Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. 1 edn. Addison-Wesley Professional (June 2000)

Walls, C.: Spring in Action. Third edition edn. Manning Publications (March
2011)

Springsource: SpringSource.org. http://www.springsource.org/ [Online; accessed
9-apr-2012].

Mak, G., Rubio, D., Long, J.: Spring Recipes: A Problem-Solution Approach. 2nd
edn. Apress (September 2010)

Rimple, K., Penchikala, S., Dickens, G.: Spring Roo in Action. Manning Publica-
tions (December 2011)

Springsource: Spring Roo-Reference Documentation.
http://www.springsource.org/roo/guide [Online; accessed 9-apr-2012].

Roebuck, K.: Object-relational mapping (Orm): High-impact Strategies - What
You Need to Know: Definitions, Adoptions, Impact, Benefits, Maturity, Vendors.
Tebbo (June 2011)

Lendak, I., Varga, E., Erdeljan, A., Gavric, M.: RESTful web services and the
common information model (CIM). In: Energy Conference and Exhibition (Ener-
gyCon), 2010 IEEE International, IEEE (December 2010) 716-721

Porres, 1., Rauf, I.: Modeling behavioral RESTful web service interfaces in UML.
In: Proceedings of the 2011 ACM Symposium on Applied Computing. SAC ’11,
New York, NY, USA, ACM (2011) 1598-1605

Rauf, I., Ruokonen, A., Systa, T., Porres, I.: Modeling a composite RESTful web
service with UML. In: Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume. ECSA ’10, New York, NY, USA, ACM (2010)
253-260

Schreier, S.: Modeling RESTful applications. In: Proceedings of the Second In-
ternational Workshop on RESTful Design. WS-REST 11, New York, NY, USA,
ACM (2011) 15-21

Frankel, D.S.: Chapter 6. extending and creating modeling languages. In: Model
Driven Architecture: Applying MDA to Enterprise Computing. 1 edn. Wiley (Jan-
uary 2003) 145-160

Favre, L.: Well-Founded metamodeling for Model-Driven architecture. In Vojtas,
P., Bielikovd, M., Charron-Bost, B., Sykora, O., eds.: SOFSEM 2005: Theory and
Practice of Computer Science. Volume 3381. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005) 364-367

Sparx Systems: Enterprise Architect =~ UML modeling tool.
http://www.sparxsystems.com/ [Online; accessed 21-apr-2012].

Sparx Systems: Code Template Framework.
http://www.sparxsystems.com/enterprise_architect_user_guide /8.0/software

_development /codetemplates.html [Online; accessed 3-apr-2012].

Laitkorpi, M., Koskinen, J., Systa, T.: A UML-based approach for abstracting ap-
plication interfaces to REST-like services. In: 13th Working Conference on Reverse
Engineering, 2006. WCRE ’06, IEEE (October 2006) 134-146

Castrejon, J.C., Lépez-Landa, R., Lozano, R.: Model2Roo: A model driven ap-
proach for web application development based on the eclipse modeling framework
and spring roo. In: Electrical Communications and Computers (CONIELECOMP),
2011 21st International Conference on. (March 2011) 82-87

Frankel, D.S., Parodi, J., Soley, R.: The MDA Journal: Model Driven Architecture
Straight From The Masters. Meghan Kiffer Pr (November 2004)

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 132

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

13th Argentine Symposium on Software Engineering, ASSE 2012

15

Object Management Group (OMG): MDA Guide Working Page.
http://ormsc.omg.org/mda_guide_working_page.htm [Online; accessed 9-apr-
2012].

Springsource: Spring Web Flow [Online; accessed 9-apr-2012].

Yang, D.: Java(TM) Persistence with JPA. Outskirts Press (March 2010)
Zambon, G., Sekler, M.: Chapter 2. JSP explained. In: Beginning JSP, JSF and
Tomcat Web Development: From Novice to Professional. 1 edn. Apress (November

2007) 25-27
Json.org: JavaScript Object Notation. http://www.json.org/ [Online; accessed
11-apr-2012].
Ben-Kiki, O., Evans, C., Net, I.: The official YAML web site.

http://www.yaml.org/spec/1.2/spec.html [Online; accessed 21-apr-2012].

Fowler, M.: Pojo. http://www.martinfowler.com/bliki/POJO.html [Online; ac-
cessed 12-apr-2012].

Lano, K.: 5. Platform-Independent design. In: Advanced Systems Design with
Java, UML and MDA. 1 edn. Butterworth-Heinemann (June 2005) 97-128

giang Huang, S., ming Zhang, H.: Research on improved MVC design pattern
based on struts and XSL. In: International Symposium on Information Science
and Engineering, 2008. ISISE ’08. Volume 1., IEEE (December 2008) 451-455
Chikofsky, E., Cross, J.H., I.: Reverse engineering and design recovery: a taxonomy.
Software, IEEE 7(1) (jan 1990) 13 17

Eclipse Foundation: Eclipse - the eclipse foundation open source community web-
site. http://www.eclipse.org/ [Online; accessed 22-Sep-2011].

Eclipse Foundation: Eclipse Modeling Framework.
http://www.eclipse.org/modeling/emf/ [Online; accessed 21-apr-2012].
Eclipse Foundation: Graphical Modeling Framework.

http://www.eclipse.org/modeling/gmp/ [Online; accessed 22-apr-2012].
Object Management Group: SPEM 2.0. http://www.omg.org/spec/SPEM/2.0/
[Online; accessed 26-apr-2012].

41 JAIIO - ASSE 2012 - ISSN: 1850-2792 - Page 133

